OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 2, Iss. 4 — Dec. 1, 2006
  • pp: 401–410

Compression of Optically Encrypted Digital Holograms Using Artificial Neural Networks

Alison E. Shortt, Thomas J. Naughton, and Bahram Javidi

Journal of Display Technology, Vol. 2, Issue 4, pp. 401-410 (2006)

View Full Text Article

Acrobat PDF (3043 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Compression and encryption/decryption are necessary for secure and efficient storage and transmission of image data. Optical encryption, as a promising application of display devices, takes advantage of both the massive parallelism inherent in optical systems and the flexibility offered by digital electronics. We encrypt real-world three-dimensional (3D) objects, captured using phase-shift interferometry, by combining a phase mask and Fresnel propagation. Compression is achieved by nonuniformly quantizing the complex-valued encrypted digital holograms using an artificial neural network. Decryption is performed by displaying the encrypted hologram and phase mask in an identical configuration. We achieved good quality decryption and reconstruction of 3D objects with as few as 2 bits in each real and imaginary value of the encrypted data.

© 2006 IEEE

Alison E. Shortt, Thomas J. Naughton, and Bahram Javidi, "Compression of Optically Encrypted Digital Holograms Using Artificial Neural Networks," J. Display Technol. 2, 401-410 (2006)

Sort:  Journal  |  Reset


  1. B. Javidi, J. L. Horner, "Optical pattern recognition for validation and security verification," Opt. Eng. 33, 1752-1756 (1994).
  2. P. Réfrégier, B. Javidi, "Optical image encryption based on input plane and Fourier plane random encoding," Opt. Lett. 20, 767-769 (1995).
  3. G. Unnikrishnan, J. Joseph, K. Singh, "Optical encryption system that uses phase conjugation in a photorefractive crystal," Appl. Opt. 37, 8181-8186 (1998).
  4. O. Matoba, B. Javidi, "Encrypted optical memory system using three-dimensional keys in the Fresnel domain," Opt. Lett. 24, 762-764 (1999).
  5. P. C. Mogensen, J. Glückstad, "Phase-only optical encryption," Opt. Lett. 25, 566-568 (2000).
  6. B. Javidi, T. Nomura, "Securing information by use of digital holography," Opt. Lett. 25, 28-30 (2000).
  7. S. Lai, M. A. Neifeld, "Digital wavefront reconstruction and its application to image encryption," Opt. Commun. 178, 283-289 (2000).
  8. E. Tajahuerce, O. Matoba, S. C. Verrall, B. Javidi, "Optoelectronic information encryption with phase-shifting interferometry," Appl. Opt. 39, 2313-2320 (2000).
  9. O. Matoba, B. Javidi, "Optical retrieval of encrypted digital holograms for secure real-time display," Opt. Lett. 27, 321-323 (2002).
  10. B. Hennelly, J. T. Sheridan, "Optical image encryption by random shifting in fractional Fourier domains," Opt. Lett. 28, 269-271 (2003).
  11. N. K. Nishchal, J. Joseph, K. Singh, "Fully phase encryption using fractional Fourier transform," Opt. Eng. 42, 1583-1588 (2003).
  12. E. Tajahuerce, B. Javidi, "Encrypting three-dimensional information with digital holography," Appl. Opt. 39, 6595-6601 (2000).
  13. T. J. Naughton, B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Opt. Eng. 43, 2233-2238 (2004).
  14. T. J. Naughton, B. Javidi, "Encryption and decryption of three-dimensional objects using digital holography," in preparation.
  15. J. W. Goodman, R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
  16. T.-C. Poon, A. Korpel, "Optical transfer function of an acousto-optic heterodyning image processor," Opt. Lett. 4, 317-319 (1979).
  17. L. Onural, P. D. Scott, "Digital decoding of in-line holograms," Opt. Eng. 26, 1124-1132 (1987).
  18. U. Schnars, W. P. O. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
  19. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, "Digital wavefront measuring interferometer for testing optical surfaces and lenses," Appl. Opt. 13, 2693-2703 (1974).
  20. J. Schwider, B. Burow, K. E. Elsner, J. Grzanna, R. Spolaczyk, K. Merkel, "Digital wavefront measuring interferometry: some systematic error sources," Appl. Opt. 22, 3421-3432 (1983).
  21. I. Yamaguchi, T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
  22. B. Javidi, E. Tajahuerce, "Three-dimensional object recognition by use of digital holography," Opt. Lett. 25, 610-612 (2000).
  23. Y. Frauel, E. Tajahuerce, M.-A. Castro, B. Javidi, "Distortion-tolerant three-dimensional object recognition with digital holography," Appl. Opt. 40, 3887-3893 (2001).
  24. T. J. Naughton, Y. Frauel, B. Javidi, E. Tajahuerce, "Compression of digital holograms for three-dimensional object reconstruction and recognition," Appl. Opt. 41, 4124-4132 (2002).
  25. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, B. Javidi, "Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram," Appl. Opt. 41, 6187-6192 (2002).
  26. J. W. Goodman, A. M. Silvestri, "Some effects of Fourier-domain phase quantization," IBM J. Res. Develop. 14, 478-484 (1970).
  27. W. J. Dallas, A. W. Lohmann, "Phase quantization in holograms—depth effects," Appl. Opt. 11, 192-194 (1972).
  28. T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, B. Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, 075801-1-075801-7 (2005).
  29. T. J. Naughton, J. B. Mc. Donald, B. Javidi, "Efficient compression of Fresnel fields for internet transmission of three-dimensional images," Appl. Opt. 42, 4758-4764 (2003).
  30. D. Kayser, T. Kreis, W. Jüptner, "Compression of digital holographic data using its electromagnetic field properties," Proc. SPIE (2005) pp. 97-105.
  31. A. E. Shortt, T. J. Naughton, B. Javidi, "Compression of digital holograms of three-dimensional objects using wavelets," Opt. Express 14, 2625-2630 (2006).
  32. A. E. Shortt, T. J. Naughton, B. Javidi, "A companding approach for nonuniform quantization of digital holograms of three-dimensional objects," Opt. Express 14, 5129-5134 (2006).
  33. A. E. Shortt, T. J. Naughton, B. Javidi, "Quantization compression of digital holograms of three-dimensional objects using artificial neural networks," submitted for publication..
  34. A. E. Shortt, T. J. Naughton, B. Javidi, "Histogram approaches for lossy compression of digital holograms of three-dimensional objects," , submitted for publication.
  35. T. J. Naughton, A. E. Shortt, B. Javidi, "Nonuniform quantization compression of digital holograms," Opt. Lett. (2006).
  36. I. Yamaguchi, K. Yamamoto, G. A. Mills, M. Yokota, "Image reconstruction only by phase in phase-shifting digital holography," Appl. Opt. 45, 975-983 (2006).
  37. E. Darakis, J. J. Soraghan, "Compression of interference patterns with application to phase-shifting digital holography," Appl. Opt. 45, 2437-2443 (2006).
  38. B. Javidi, A. Sergent, G. Zhang, L. Guibert, "Fault tolerance properties of a double phase encoding encryption technique," Opt. Eng. 36, 992-998 (1997).
  39. F. Goudail, F. Bollaro, B. Javidi, P. Réfrégier, "Influence of a perturbation in a double phase-encoding system," J. Opt. Soc. Am. A 15, 2629-2638 (1998).
  40. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  41. H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).
  42. D. A. Huffman, "A method for the construction of minimum redundancy codes," Proc. IRE 40, 1098-1101 (1952).
  43. J. Ziv, A. Lempel, "A universal algorithm for sequential data compression," IEEE Trans. Inf. Theory IT-23, 337-343 (1977).
  44. T. A. Welch, "A technique for high performance data compression," IEEE Computer 17, 8-19 (1984).
  45. M. Burrows, D. J. Wheeler, A block-sorting lossless data compression algorithm Digital Systems Research CenterPalo AltoCA Tech. Rep. 124 (1994).
  46. N. M. Nasrabadi, Y. Feng, "Vector quantization of images based upon the Kohonen self-organizing feature maps," IEEE Int. Conf. Neural Netw. (1988) pp. 101-108.
  47. C. Amerijckx, M. Verleysen, P. Thissen, J.-D. Legat, "Image compression by self-organized Kohonen map," IEEE Trans. Neural Netw. 9, 503-507 (1998).
  48. P. V. Balakrishnan, M. C. Cooper, V. S. Jacob, P. A. Lewis, "A study of the classification capabilities of neural networks using unsupervised learning: a comparison with k-means clustering," Psychometrika 59, 509-525 (1994).
  49. R. D. Dony, S. Haykin, "Neural network approaches to image compression," Proc. IEEE 83, 288-303 (1995).
  50. M. Egmont-Peterson, D. de Riddler, H. Handels, "Image processing with neural networks—a review," Pattern Recogn. 35, 2279-2301 (2002).
  51. J. Jiang, "Image compression with neural networks—a survey," Signal Process. Image Commun. 14, 737-760 (1999).
  52. A. K. Krishnamurthy, S. C. Ahalt, D. E. Melton, P. Chen, "Neural networks for vector quantization of speech and images," IEEE J. Sel. Areas Commun. 8, 1449-1457 (1990).
  53. C.-C. Lu, Y. H. Shin, "A neural network based image compression system," IEEE Trans. Consum. Electron. 38, 25-29 (1992).
  54. T. Kohonen, Self-Organizing Maps (Springer-Verlag, 1994).
  55. T. Kohonen, "The self-organizing map," Proc. IEEE 78, 1464-1480 (1990).
  56. J. MacQueen, "Some methods for classification and analysis of multivariate observations," Proc. 5th Berkeley Symp. on Math. Statistics and Probab. (1967) pp. 281-297.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited