OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 3, Iss. 2 — Jun. 1, 2007
  • pp: 160–175

Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting

Michael R. Krames, Oleg B. Shchekin, Regina Mueller-Mach, Gerd O. Mueller, Ling Zhou, Gerard Harbers, and M. George Craford

Journal of Display Technology, Vol. 3, Issue 2, pp. 160-175 (2007)

View Full Text Article

Acrobat PDF (1776 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for “warm” white color temperatures (~3000–4000 K) and high color rendering (CRI > 80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1 x 1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs.

© 2007 IEEE

Michael R. Krames, Oleg B. Shchekin, Regina Mueller-Mach, Gerd O. Mueller, Ling Zhou, Gerard Harbers, and M. George Craford, "Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting," J. Display Technol. 3, 160-175 (2007)

Sort:  Year  |  Journal  |  Reset


  1. N. Holonyak, Jr."Is the light emitting diode (LED) an ultimate lamp?," Am. J. Phys. 68, 864-866 (2000).
  2. M. G. Craford, N. Holonyak, Jr.F. A. Kish, Jr."In pursuit of the ultimate lamp," Scientific Amer. 83-88 (2001).
  3. I. Vurgaftman, J. R. Meyer, "Band parameters for III-V compound semiconductors and their alloys," J. Appl. Phys. 89, 5815-5875 (2001).
  4. K. M. Yu, "On the crystalline structure, stoichiometry and band gap of InN thin films," Appl. Phys. Lett. 86, 071910 (2005).
  5. C. P. Kuo, "High performance AlGaInP visible light-emitting diodes," Appl. Phys. Lett. 57, 2937-2939 (1990).
  6. H. Sugawara, M. Ishikawa, G. Hatakoshi, "High-efficiency InGaAlP/GaAs visible light-emitting diodes," Appl. Phys. Lett. 58, 1010-1012 (1991).
  7. K. H. Huang, "Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer," Appl. Phys. Lett. 61, 1045-1047 (1992).
  8. F. A. Kish, "Very high-efficiency semiconductor wafer-bonded transparent-substrate $({\rm Al}_{x}{\hbox{Ga}}_{1-{x}})_{0.5}{\hbox{In}}_{0.5}{\rm P/GaP}$ light-emitting diodes," Appl. Phys. Lett. 64, 2839-2841 (1994).
  9. M. R. Krames, "High-power truncated-inverted-pyramid $({\rm Al}_{x}{\hbox{Ga}}_{1-{x}})_{0.5}{\hbox{In}}_{0.5}{\rm P/GaP}$ light-emitting diodes exhibiting $>$50% external quantum efficiency," Appl. Phys. Lett. 75, 2365-2367 (1999).
  10. K. Streubel, N. Linder, R. Wirth, A. Jaeger, "High brightness AlGaInP light-emitting diodes," IEEE J. Sel. Topics Quantum Electron. 8, 321-332 (2002).
  11. F. A. Kish, R. M. Fletcher, Semiconductors and Semimetals (Academic, 1997) pp. 149-226.
  12. D. P. Bour, D. W. Treat, R. L. Thornton, R. S. Geels, D. F. Welch, "Drift leakage current in AlGaInP quantum-well lasers," IEEE J. Quantum Electron. 29, 1337-1343 (1993).
  13. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Appl. Phys. Lett. 48, 353-355 (1986).
  14. H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)," Jpn. J. Appl. Phys. 28, L2112-L2114 (1989).
  15. S. Nakamura, M. Senoh, T. Mukai, "High-power InGaN/GaN double-heterostructure violet light emitting diodes," Appl. Phys. Lett. 62, 2390-2392 (1993).
  16. S. Nakamura, M. Senoh, N. Iwasa, S.-I. Nagahama, "High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes," Appl. Phys. Lett. 67, 1868-1870 (1995).
  17. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996).
  18. S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, H. I. Erikson, "Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition," Appl. Phys. Lett. 70, 420-422 (1997).
  19. S. Nakamura, "The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes," Science 14, 956-961 (1998).
  20. F. Bernardini, V. Fiorentini, D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B 56, R10024-R10027 (1997).
  21. T. Takeuchi, "Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect," Appl. Phys. Lett. 73, 1691-1693 (1998).
  22. N. F. Gardner, J. C. Kim, J. J. Wierer, Y.-C. Shen, M. R. Krames, "Polarization anisotropy in the electroluminescence of m-plane InGaN-GaN multiple-quantum-well light-emitting diodes," Appl. Phys. Lett. 86, 111101 (2005).
  23. R. Sharma, "Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode," Appl. Phys. Lett. 87, 231110 (2005).
  24. M. Funato, "Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11–22} GaN bulk substrates," Jpn. J. Appl. Phys. 45, L650-L662 (2006).
  25. N. A. El-Masry, E. L. Piner, S. X. Liu, S. M. Bedair, "Phase separation in InGaN grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 72, 40-42 (1998).
  26. K. Iida, "350.9 nm UV laser diode grown on low-dislocation-density AlGaN," Jpn. J. Appl. Phys. 43, L499-L500 (2004).
  27. W. B. Joyce, R. Z. Bachrach, R. W. Dixon, D. A. Sealer, "Geometrical properties of random particles and the extraction of photons from electroluminescent diodes," J. Appl. Phys. 45, 2229-2253 (1974).
  28. G. O. Mueller, Philips Lumileds Lighting Co.San JoseCAdata .
  29. H. Sugawara, K. Itaya, H. Nozaki, G. Hatakoshi, "High-brightness InGaAlP green light-emitting diodes," Appl. Phys. Lett. 61, 1775-1777 (1992).
  30. I. Schnitzer, E. Yablonovitch, "30% external quantum efficiency from surface textured, thin-film light-emitting diodes," Appl. Phys. Lett. 63, 2174-2176 (1993).
  31. K. Streubel, Osram Opto Semiconductors RegensburgGermany (2006) private communication.
  32. N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, N. Moll, "1.4 $\times$ efficiency improvement in transparent-substrate $({\rm Al}_{x}{\hbox{Ga}}_{1-{x}})_{0.5}{\hbox{In}}_{0.5}{\rm P}$ light-emitting diodes with thin $(\leq 2000 \hbox{\rm{\AA}})$ active regions," Appl. Phys. Lett. 74, 2230-2232 (1999).
  33. J. Edmond, "High efficiency GaN-based LEDs and lasers on SiC," J. Crystal Growth 272, 242-250 (2004).
  34. M. Yamada, "InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode," Jpn. J. Appl. Phys. 41, L1431-L1433 (2002).
  35. Y. Narukawa, "Ultra-high efficiency white light-emitting diodes," Jpn. J. Appl. Phys. 45, L1084-L1086 (2006).
  36. J. J. Wierer, "High-power AlGaInN flip-chip light-emitting diodes," Appl. Phys. Lett. 78, 3379-3381 (2001).
  37. D. A. Steigerwald, "Illumination with solid state lighting technology," IEEE J. Sel. Topics Quant. Electron. 8, 310-320 (2002).
  38. Y.-C. Shen, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221-2223 (2003).
  39. M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, M. Stutzmann, "Optical process for liftoff of group III-nitride films," Phys. Stat. Sol. (A) 159, R3-R4 (1997).
  40. W. S. Wong, T. Sands, N. W. Cheung, "Damage-free separation of GaN thin films from sapphire substrates," Appl. Phys. Lett. 72, 599-601 (1998).
  41. V. Haerle, "High brightness LEDs for general lighting applications using the new ThinGaN technology," Phys. Stat. Sol. (A) 201, 2736-2739 (2004).
  42. D. Morita, "Watt-class high-output-power 365 nm ultraviolet light-emitting diodes," Jpn. J. Appl. Phys. 43, 5945-5950 (2004).
  43. O. B. Shchekin, "High performance thin-film flip-chip InGaN-GaN light-emitting diodes," Appl. Phys. Lett. 89, 071109 (2006).
  44. J. J. Wierer, D. A. Kellogg, N. Holonyak, Jr."Tunnel contact junction native-oxide aperture and mirror vertical-cavity surface-emitting lasers and resonant-cavity light-emitting diodes," Appl. Phys. Lett. 74, 926-928 (1999).
  45. R. Joray, R. P. Stanley, M. Ilegems, "High efficiency planar MCLEDs," Phys. Stat. Sol. (B) 242, 2315-2325 (2005).
  46. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, E. F. Schubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phy. Rev. Lett. 78, 3294-3297 (1997).
  47. M. Rattier, "Toward ultrahigh-efficiency aluminum oxide microcavity light-emitting diodes: Guided mode extraction by photonic crystals," IEEE J. Select. Top. Quant. Electron. 8, 238-247 (2002).
  48. J. J. Wierer, "InGaN/GaN quantum-well-heterostructure light-emitting diodes employing photonic crystal structures," Appl. Phys. Lett. 84, 3885-3887 (2004).
  49. M. Boroditsky, "Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes," J. Appl. Phys. 87, 3497-3504 (2000).
  50. G. E. Stillman, M. D. Sirkis, J. A. Rossi, M. R. Johnson, N. Holonyak, Jr."Volume excitation of an ultrathin single-code CdSe laser," Appl. Phys. Lett. 9, 268-269 (1966).
  51. P. Schlotter, R. Schmidt, J. Schneider, "Luminescence conversion of blue light emitting diodes," Appl. Phys. A 64, 417-418 (1997).
  52. S. Nakamura, G. Fasol, The Blue Laser Diode (Springer, 1997) pp. 216-219.
  53. R. Mueller-Mach, G. O. Mueller, M. R. Krames, T. Trottier, "High-power phosphor-converted light-emitting diodes based on III-nitrides," IEEE J. Select. Top. Quant. Electron. 8, 339-345 (2002).
  54. H. A. Höppe, H. Lutz, P. Morys, W. Schick, A. Seilmeier, "Luminescence in ${\hbox{Eu}}^{2+}$-doped ${\hbox{Ba}}_{2}{\hbox{Si}}_{5}{\hbox{N}}_{8}$: Fluorescence, thermoluminescence, and upconversion," J. Phys. Chem. Solids 61, 2001-2006 (2000).
  55. R. Mueller-Mach, "Highly efficient all-nitride phosphor-converted white light emitting diode," Phys. Stat. Sol. (A) 202, 1727-1732 (2005).
  56. G. O. Mueller, R. Mueller-Mach, M. R. Krames, "Proposal for a new metric on the illumination quality of light," LRO Symp. on Light and Color (2005).
  57. W. Davis, Y. Ohno, "Toward an improved color rendering metric," Proc. SPIE (2005) pp. 283-290.
  58. P. N. Grillot, M. R. Krames, H. Zhao, S.-H. Teoh, "Sixty thousand hour light output reliability of AlGaInP light emitting diodes," IEEE Trans. Dev. Mater. Rel. .
  59. G. E. Höfler, C. Carter-Coman, M. R. Krames, N. F. Gardner, F. A. Kish, T. S. Tan, B. Loh, J. Posselt, D. Collins, G. Sasser, "High-flux, high-efficiency transparent-substrate AlGaInP/GaP light-emitting diodes," Electron. Lett. 34, 1781-1782 (1998).
  60. N. Narendran, Rensselaer Polytechnic InstituteTroyNY TroyNY (2006) private communication.
  61. G. Derra, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 1995-3110 (2005).
  62. Solid-State Lighting Research and Development Portfolio (2006) pp. 48 prepared for U.S. Dep. of Energy.
  63. R. Haitz, F. Kish, J. Tsao, J. Nelson, "The case for a national research program on semiconductor lighting," Optoelectronics Industry Development Association Washington, D.C. (1999).
  64. G. Harbers, S. Bierhuizen, M. R. Krames, "Performance of high power light-emitting diodes in display applications," J. Display Technol. (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited