OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 3, Iss. 2 — Jun. 1, 2007
  • pp: 184–192

Solution-Processed Organic Light-Emitting Diodes for Lighting

Anil R. Duggal, Christian M. Heller, Joseph J. Shiang, Jie Liu, and Larry N. Lewis

Journal of Display Technology, Vol. 3, Issue 2, pp. 184-192 (2007)

View Full Text Article

Acrobat PDF (269 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, the vapor-deposited and solution-processed organic light-emitting diode (OLED) technology development paradigms are described and then compared with respect to their prospects for enabling general lighting applications. Two key development needs are improved device efficiency and lower cost fabrication methods. Progress in these areas for solution-processed OLEDs is illustrated by describing recent methods for attaining high efficiency blue emission and introducing novel low cost process methods for device fabrication which enable high performance devices without the need for any vacuum processing steps.

© 2007 IEEE

Anil R. Duggal, Christian M. Heller, Joseph J. Shiang, Jie Liu, and Larry N. Lewis, "Solution-Processed Organic Light-Emitting Diodes for Lighting," J. Display Technol. 3, 184-192 (2007)

Sort:  Year  |  Journal  |  Reset


  1. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, "Electroluminescence in conjugated polymers," Nature 397, 121-128 (1999).
  2. S. R. Forrest, "Active optoelectronics using thin-film organic semiconductors," IEEE J. Sel. Topics Quantum Electron. 6, 1072-1083 (2000).
  3. A. Bergh, G. Craford, A. Duggal, R. Haitz, "The promise and challenge of solid-state lighting," Physics Today 54, 42-47 (2001).
  4. A. R. Duggal, Org. Electrolum. (Taylor & Francis, 2005) pp. 437-466.
  5. A. R. Duggal, C. M. Heller, D. F. Foust, J. J. Shiang, "Organic light-emitting devices for illumination-quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
  6. B. W. D'Andrade, S. R. Forrest, "White organic light-emitting devices for solid-state lighting," Adv. Mat. 16, 1585-1595 (2004).
  7. A. R. Duggal, D. F. Foust, W. F. Nealon, C. M. Heller, "Fault-tolerant, scalable organic light-emitting device architecture," Appl. Phys. Lett. 82, 2580-2582 (2003).
  8. T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, J. Kido, "Multiphoton organic EL device having charge generation layer," Soc. Inf. Display Int. Symp. Dig. Tech. Papers (2003) pp. 979-981.
  9. L. S. Liao, K. P. Klubek, C. W. Tang, "High-efficiency tandem organic light-emitting diodes," Appl. Phys. Lett. 84, 167-169, (2004).
  10. A. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, N. Rutherford, "Thin film encapsulated flexible organic electroluminescent displays," Appl. Phys. Lett. 83, 413-415 (2003).
  11. M. Yan, T. W. Kim, A. G. Erlat, M. Pellow, D. F. Foust, J. Liu, M. Schaepkens, C. M. Heller, P. A. McConnelee, T. P. Feist, A. R. Duggal, "A transparent, high barrier, and high heat substrate for organic electronics," Proc. IEEE 93, 1468-1477 (2005).
  12. C. W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett. 51, 913-915 (1987).
  13. C. W. Tang, S. A. VanSlyke, C. H. Chen, "Electroluminescence of doped organic thin films," J. Appl. Phys. 65, 3610-3616 (1989).
  14. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature 395, 151-154 (1998).
  15. J. Endo, T. Matsumoto, J. Kido, "Organic electroluminescent deviceswith a vacuum-deposited Lewis-acid-doped hole-injecting layer," Jpn. J. Appl. Phys. 41, L358-L360 (2002).
  16. X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, "Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer," Appl. Phys. Lett. 78, 410-412 (2001).
  17. G. Parthasarathy, C. Shen, A. Kahn, S. R. Forrest, "Lithium doping of semiconducting organic charge transport materials," J. Appl. Phys. 89, 4986-4992 (2001).
  18. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck, "High-efficiency and low-voltage p- i-n electrophosphorescent organic light-emitting diodes with double-emission layers," Appl. Phys. Lett. 85, 3911-3913 (2004).
  19. R. H. Partridge, Radiation sources U.S. Patent 3 995 299 (1976).
  20. R. H. Partridge, "Electroluminescence from polyvinylcarbazole films: Pt. 1: Cabazole cations," Polymer 24, 733-738 (1983).
  21. R.H. Partridge, "Polyvinylcarbazole films containing antimony pentachloride," Polymer 24, 739-747 (1983).
  22. R.H. Partridge, "Electroluminescent devices," Polymer 24, 748-752 (1983).
  23. R.H. Partridge, "Electroluminescence using higher work function cathodes," 24, 755-762 (1983).
  24. J. Kido, H. Shionoya, K. Nagai, "Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly( N-vinylcarbazole," Appl. Phys. Lett 67, 2281-2283 (1995).
  25. A. Nakamura, T. Tada, M. Mizukami, S. Yagyu, "Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode," Appl. Phys. Lett. 84, 130-132 (2004).
  26. S. A. Choulis, M. K. Mathai, V.-E. Choong, F. So, "Highly efficient organic electroluminescent device with modified cathode," Appl. Phys. Lett 88, 203502-1-203502-3 (2006).
  27. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
  28. D. Braun, A. J. Heeger, "Visible light emission from semiconducting polymer diodes," Appl. Phys. Lett. 58, 1982 (1991).
  29. Y. Yang, A. J. Heeger, "Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency," Appl. Phys. Lett. 64, 1245-1247 (1994).
  30. S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, J. C. Scott, "Polymeric anodes for improved polymer light-emitting diode performance," Appl. Phys. Lett. 70, 2067-2069 (1997).
  31. W. Wu, M. Inbasekaran, M. Hudack, D. Welsh, W. Yu, Y. Cheng, C. Wang, S. Kram, M. Tacey, M. Bernius, R. Fletcher, K. Kiszka, S. Munger, J. O'Brien, "Recent development of polyfluorene-based RGB materials for light emitting diodes," Microelectron. J. 35, 343-348 (2004).
  32. H. F. Ivey, "Color and efficiency of luminescent light sources," J. Opt. Soc. Am. 53, 1185-1198 (1963).
  33. W. A. Thornton, " Luminosity and color-rendering capability of white light," J. Opt. Soc. Amer., 61, 1155-1163 (1971).
  34. A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, M. S. Shur, "Optimization of white polychromatic semiconductor lamps," Appl. Phys. Lett. 80, 234-236 (2002).
  35. J.-S. Kim, R. H. Friend, I. Grizzi, J. H. Burroughs, "Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes," Appl. Phys. Lett. 87, 023506-1-1023506-3 (2005).
  36. X. H. Yang, F. Jaiser, S. Klinger, D. Neher, "Blue polymer electrophosphorescent devices with differentelectron-transporting oxadiazoles," Appl. Phys. Lett. 88, 021107-1-021107-3 (2006).
  37. S.-C. Lo, G. J. Richards, J. P. J. Markham, E. B. Namdas, S. Sharma, P. L. Burn, I. D. W. Samuel, "A light-blue phosphorescent dendrimer for efficient solution-processed light-emitting diodes," Adv. Funct. Mat. 15, 1451-1458 (2005).
  38. R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M. E. Thompson, "Blue organic electrophosphorescence using exothermic host-guest energy transfer," Appl. Phys. Lett. 82, 2422-2224 (2003).
  39. T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, "Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands, ," Inorg. Chem. 44, 7992-8003 (2005).
  40. J. J. Shiang, A. R. Duggal, Unpublished results.
  41. M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C.-C. Wu, F.-C. Fang, Y.-L. Liao, K.-T. Wong, C.-I. Wu, "Highly efficient organic blue electrophosphorescent devices based on 3,6-Bis(triphenylsilyl)carbazole as the host material," Adv. Mat. 18, 1216-1220 (2006).
  42. R. Service, "Organic LEDS look forward to a bright,white future," Science 310, 1762-1763 (2005).
  43. J.-S. Kim, P. K. H. Ho, N. C. Greenham, R. H. Friend, "Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations," J. Appl. Phys. 88, 1073-1081 (2000).
  44. M. H. Lu, J. C. Sturm, "Optimization of external coupling and light emission in organic light-emitting devices: Modeling and experiment," J. Appl. Phys. 91, 595-604 (2002).
  45. W. L. Barnes, "Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices," J. Lightwave Tech. 17, 2170-2182 (1999).
  46. R. R. Chance, A. Prock, R. Silbey, Adv. in Chem. Phys. 37, 1-65 (1978).
  47. J. M. Ziebarth, M. D. McGehee, "A theoretical and experimental investigation of light extraction from polymer light-emitting diodes," J. Appl. Phys. 97, 064502-1 (2005).
  48. C. M. Ramsdale, N. C. Greenham, "The optical constants of emitter and electrode materials in polymer light-emitting diodes," J. Phys. D: Appl. Phys. 36, L29-L34 (2003).
  49. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Dory, W. L. Barnes, "Bragg scattering from periodically microstructured light emitting diodes," Appl. Phys. Lett. 77, 3340-3342 (2000).
  50. V. Bulovic, V. B. Khalifin, G. Gu, P. E. Burrows, D. Z. Garbuzov, S. R. Forrest, "Weak microcavity effects in organic light-emitting devices," Phys. Rev. B. 58, 3730-3740 (1998).
  51. S. Möller, S. F. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002).
  52. G. Gu,, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E Thompson, "High-external-quantum-efficiency organic light-emitting devices," Opt. Lett. 22, 396-398 (1997).
  53. C. F. Madigan, M. H. Lu, J. C. Sturn, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
  54. T. Tatsui, M. Yahiro, H. Yokogawa, K. Kawano, M. Yokoyama, "Doubling coupling-out efficiency in organic light emitting devices using a thin silica aerogel layer," Adv. Mat. , 1149-1152 (2001).
  55. T. Yamasaki, K. Sumioka, T. Tsutsui, "Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium," Appl. Phys. Lett. 76, 1243-1245 (2000).
  56. J. J. Shiang, A. R. Duggal, "Application of radiative transport theory to light extraction from organic light emitting diodes," J. Appl. Phys. 95, 2880-2888 (2004).
  57. J. J. Shiang, T. J. Faircloth, A. R. Duggal, "Experimental demonstration of increased organic light emitting device output via volumetric light scattering," J. Appl. Phys. 95, 2889-2895 (2004).
  58. N. Itoh, T. Akai, H. Maeda, D. Aoki, "Development of novel paste cathode for all print fabricating OLED devices," SID Symp. Dig. of Tech. Papers (2006) pp. 1559-1562.
  59. J. Liu, L. N. Lewis, T. J. Faircloth, A. R. Duggal, "High performance organic light-emitting diodes fabricated via a vacuum-free lamination process," Appl. Phys. Lett. 88, 223509-1-223509-3 (2006).
  60. T. F. Guo, S. Pyo, S. C. Chang, Y. Yang, "High performance polymer light-emitting diodes fabricated by a low temperature lamination process," Adv. Funct. Mater. 11, 339-343 (2001).
  61. T. W. Lee, J. Zaumseil, Z. N. Bao, J. W. P. Hsu, J. A. Rogers, "Organic light-emitting diodes formed by soft contact lamination," Proc. Natl. Acad. Sci. (2004) pp. 429-433.
  62. J. Liu, A. R. Duggal, J. J. Shiang, C. M. Heller, "Efficient bottom cathodes for organic light-emitting devices," Appl. Phys. Lett. 85, 837-839 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited