OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 4, Iss. 4 — Dec. 1, 2008
  • pp: 398–409

Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays

M. Dylan Tisdall, Gerwin Damberg, Paul Wighton, Nhi Nguyen, Yan Tan, M. Stella Atkins, Hiroe Li, and Helge Seetzen

Journal of Display Technology, Vol. 4, Issue 4, pp. 398-409 (2008)

View Full Text Article

Acrobat PDF (1245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


DICOM specifies that digital data values should be linearly mapped to just-noticable differences (JNDs) in luminance. Increasing the number of JNDs available requires increasing the display's dynamic range. However, operating over too wide a range may cause human observers to miss contrast in dark regions due to adaptation to bright areas or, alternatively, miss edges in bright regions due to scattering in the eye. Dolby Inc.'s high dynamic range (HDR) LCD display has a maximum luminance over 2000 $ {\hbox{cd/m}}^{2}$; bright enough to produce significant in-eye scatter. The display combines a spatially variable backlight producing a low-resolution 8-bit “backlight image” with a high-resolution 8-bit LCD panel, approximating a 16-bit greyscale display. Alternatively, by holding the backlight constant at 800 $ {\hbox{cd/m}}^{2}$, a standard medical LCD display can be simulated.We used two-alternative forced choice (2AFC) signal-detection experiments to quantify display quality. We explored whether the full-power HDR display's optical characteristics (scattering and low resolution backlight) have a negative effect on signal detection in medical images compared with a standard LCD. We used 8-bit test images derived from high-field MRI data combined with synthetic targets and synthetic Rician noise.We suggest signal detection performance with the HDR display is comparable to a standard medical LCD.

© 2008 IEEE

M. Dylan Tisdall, Gerwin Damberg, Paul Wighton, Nhi Nguyen, Yan Tan, M. Stella Atkins, Hiroe Li, and Helge Seetzen, "Comparing Signal Detection Between Novel High-Luminance HDR and Standard Medical LCD Displays," J. Display Technol. 4, 398-409 (2008)

Sort:  Year  |  Journal  |  Reset


  1. K. A. Fetterly, H. R. Blume, M. J. Flynn, E. Samei, "Introduction to grayscale calibration and related aspects of medical imaging grade liquid crystal displays," J. Digital Imag. (2007).
  2. T. Kimpe, T. Tuytschaever, "Increasing the number of gray shades in medical display systems—How much is enough," J. Digital Imag. 20, 422-432 (2007).
  3. J. J. Vos, B. L. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, T. J. T. P. van den Berg, CIE Equations for Diability Glare CIE (2002) Tech. Rep. 146.
  4. H. Seetzen, L. A. Whitehead, "A high dynamic range display using low and high resolution modulators," SID 03 Dig. (2003) pp. 1450-1453.
  5. H. Seetzen, S. Makki, H. Ip, T. Wan, V. Kwong, G. Ward, Wolfga, L. Whitehead, Human Vision and Electronic Imaging XII (SPIE—The Int. Soc. Opt. Eng., 2007).
  6. M. D. Tisdall, M. S. Atkins, "Using human and model performance to compare MRI reconstructions," IEEE Trans. Med. Imag. 25, 1510-1517 (2006).
  7. H. Gudbjartsson, S. Patz, "The Rician distribution of noisy MRI data," Magn. Reson. Med. 34, 910-914 (1995).
  8. J. P. Rolland, H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Amer. A 9, 649-658 (1992).
  9. M. P. Eckstein, C. K. Abbey, J. S. Whiting, Proc. SPIE—Medical Imaging 1998 (, 1998) pp. 16-26.
  10. M. P. Eckstein, C. K. Abbey, F. O. Bochud, J. L. Bartoff, J. S. Whiting, "The effect of image compression in model and human performance," Proc. SPIE (1999) pp. 243-252.
  11. A. Badano, B. D. Gallas, "Detectability decreases with off-normal viewing in medical liquid crystal displays," Acad. Radiol. 13, 210-218 (2006).
  12. A. E. Burgess, X. Li, C. K. Abbey, "Visual signal detectability with two noise components: Anomalous masking effects," J. Opt. Soc. Amer. A 14, 2420-2442 (1997).
  13. S. Park, "Efficiency of the human observer detecting random signals in random backgrounds," J. Opt. Soc. Amer. A 22, 3-16 (2005).
  14. A. G. Rempel, M. Trentacoste, H. Seetzen, H. D. Young, W. Heidrich, L. Whitehead, G. Ward, "Ldr2hdr: On-the-fly reverse tone mapping of legacy video and photographs," SIGGRAPH '07 pp. 39-44.
  15. M. Trentacoste, Photometric Image Processing for High Dynamic Range Displays Master's Univ. of British ColumbiaVancouverCanada (2006).
  16. E. Siegel, E. Krupinski, E. Samei, M. Flynn, K. Andriole, B. Erickson, J. Thomas, A. Badano, J. A. Seibert, E. D. Pisano, "Digital mamography image quality: Image display," J. Amer. College of Radiol. 3, 615-627 (2006).
  17. B. D. Gallas, G. A. Pennello, K. J. Myers, "Multireader multicase variance analysis for binary data," J. Opt. Soc. Amer. A 24, B70-B80 (2007).
  18. B. D. Gallas, D. G. Brown, "Reader studies for validation of cad systems," Neural Netw. 21, 387-397 (2008).
  19. D. J. Schuirmann, "A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability," J. Pharmacokinet. Biopharmaceut. 15, 657-680 (1987).
  20. S. Wellek, Testing Statisical Hypotheses of Equivalence (Chapman and Hall, 2003).
  21. W. J. Westlake, "Symmetrical confidence intervals for bioequivalence trials," Biometrics 32, 741-744 (1976).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited