OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 4, Iss. 4 — Dec. 1, 2008
  • pp: 424–430

An Updatable Holographic Display for 3D Visualization

Pierre-Alexandre Blanche, Savas Tay, Ram Voorakaranam, Pierre Saint-Hilaire, Cory Christenson, Tao Gu, Weiping Lin, Donald Flores, Peng Wang, Michiharu Yamamoto, Jayan Thomas, Robert A. Norwood, and Nasser Peyghambarian

Journal of Display Technology, Vol. 4, Issue 4, pp. 424-430 (2008)

View Full Text Article

Acrobat PDF (1246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Among the various methods to produce three-dimensional (3D) images, holography occupies a special niche. Indeed, holograms provide highly realistic 3D images with a large viewing angle capability without the need for special eyewear. Such characteristics make them valuable tools for a wide range of applications such as medical, industrial, military, and entertainment imaging. To be suitable for an updatable holographic display, a material needs to have a high diffraction efficiency, fast writing time, hours of image persistence, capability for rapid erasure, and the potential for large display area—a combination of properties that has not been realized before.Currently, there exist several media for recording holograms like photopolymers, silver halide films or dichromated gelatin, to name a few. However, in all of these media, the image is permanently written and cannot be refreshed. There also exist dynamic 3D display systems based on acousto-optic materials, liquid-crystals or microelectromechanical systems (MEMS), however they rely on massive wavefront computations that limit their image size capability. Inorganic crystals for hologram recording such as photorefractive crystals are extremely difficult to grow to larger than a few cubic centimeters in volume.Photorefractive polymers are dynamic holographic recording materials that allow for updating of images. They have been investigated over the last decade and have a wide range of applications including optical correlation, imaging through scattering media, and optical communication. Here, we report the details of the achievement of the first updatable holographic 3D display based on photorefractive polymers. With a 4$\times$4 in$^2$ size, this is the largest photorefractive 3D display to date and is capable of recording and displaying new images every few minutes. The holograms can be viewed for several hours without the need for refreshing, and can be completely erased and updated whenever desired.

© 2008 IEEE

Pierre-Alexandre Blanche, Savas Tay, Ram Voorakaranam, Pierre Saint-Hilaire, Cory Christenson, Tao Gu, Weiping Lin, Donald Flores, Peng Wang, Michiharu Yamamoto, Jayan Thomas, Robert A. Norwood, and Nasser Peyghambarian, "An Updatable Holographic Display for 3D Visualization," J. Display Technol. 4, 424-430 (2008)

Sort:  Year  |  Journal  |  Reset


  1. M. R. Chatterjee, S. Chen, Digital Holography and Three-Dimensional Display: Principles and Applications. (Springer, 2006) pp. 379-425.
  2. S. Pastoor, 3D Videocommunication. (Wiley, 2005) pp. 235-251.
  3. K. Iizuka, "Welcome to the wonderful world of 3D: Introduction, principles and history," Optics Photonics News 17, 42-51 (2006).
  4. N. A. Dodgson, "Autostereoscopic 3D displays," Computer 38, 31-36 (2005).
  5. G. E. Favalora, "Volumetric 3D displays and application infrastructure," Computer 38, 37-44 (2005).
  6. E. Downing, L. Hesselink, J. Ralston, R. A. Macfarlane, "Three color, solid-state, three-dimensional display," Science 273, 1185-1189 (1996).
  7. J. R. Thayn, J. Ghrayeb, D. G. Hopper, "3-d display design concept for cockpit and mission crewstations," Ser. Proc. SPIE 3690, 180-186 (1999).
  8. K. Choi, J. Kim, Y. Lim, B. Lee, "Full parallax, viewing-angle enhanced computergenerated holographic 3d display system using integral lens array," Opt. Expr. 13, 10 494-10 502 (2005).
  9. D. Miyazaki, K. Shiba, K. Sotsuka, K. Matsushita, "Volumetric display system based on three-dimensional scanning of inclined optical image," Opt. Express 14, 12 760-12 769 (2006).
  10. S. A. Benton, Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, 2001).
  11. L. A. Lessard, H. I. Bjelkhagen, "Practical holography XXI: Materials and applications (special issue)," Ser. Proc. SPIE 6488, (2007).
  12. S. A. Benton, V. Michael Bove, Jr.Holographic Imaging (Wiley, 2008).
  13. Zebra Imaging, Inc., M. A.KlugC.NewswangerQ.HuangM. E.HolzbachActive digital hologram display U.S. Patent 7 227 674 (2007).
  14. P. St. Hilaire, M. Lucente, S. A. Benton, "Synthetic aperture holography: A novel approach to three dimensional displays," J. Opt. Soc. Amer. A 9, 1969-1978 (1992).
  15. M. Lucente, Diffraction-specific fringe computation for electroholography Ph.D. dissertation Dep. Elect. Eng. Comput. Sci. M.I.T. (1994).
  16. C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, Recent Developments in Computer-Generated Holography: Toward a Practical Electroholography System for Interactive 3D Visualization 5290, 27-41 (2004).
  17. M. L. Huebschman, B. Munjuluri, H. R. Garner, "Dynamic holographic 3-d image projection," Opt. Express 11, 437-445 (2003).
  18. L. Hesselink, S. S. Orlov, M. C. Bashaw, Holographic Data Storage Systems 92, 1231-1280 (2004).
  19. S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, "Observation of the photorefractive effect in a polymer," Phys. Rev. Lett. 66, 1846-1849 (1991).
  20. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, "Photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994).
  21. S. R. Marder, B. Kippelen, A. K.-Y. Jen, N. Peyghambarian, "Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications," Nature 388, 845-851 (1997).
  22. B. Kippelen, K. Meerholz, N. Peyghambarian, Nonlinear Optics of Organic Molecules and Polymers (CRC, 1996) pp. 507-623.
  23. P. A. Blanche, B. Kippelen, A. Schülzgen, C. Fuentes-Hernandez, G. Ramos-Ortiz, J. F. Wang, E. Hendrickx, N. Peyghambarian, S. R. Marder, "Photorefractive polymers sensitized by two-photon absorption," Opt. Lett. 27, 19-21 (2002).
  24. O. Ostroverkhova, W. E. Moerner, "Organic photorefractives: Mechanism, materials and applications," Chem. Rev. 104, 3267-3314 (2004).
  25. E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature 418, 959-964 (2002).
  26. W. Moerner, A. Grunnet-Jepsen, "Recent advances in high gain photorefractive polymers," Proc. IEEE Lasers and Electro-Optics Soc. 10th Annu. Meeting (1997) pp. 38-39.
  27. B. L. Volodin, B. Kippelen, K. Meerholz, N. Peyghambarian, B. A. Javidi, "Polymeric optical pattern-recognition system for security verification," Nature 383, 58-60 (1996).
  28. S. Tay, J. Thomas, M. E. M, G. Li, R. Kippelen, S. Marder, G. Meredith, A. Schulzgen, N. Peyghambarian, "Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm," Appl. Phys. Lett. 85, 4561-4563 (2004).
  29. B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. R. ckel, L. Erskine, N. Peyghambarian, "Near infrared photorefractive polymers and their applications for imaging," Science 279, 54-57 (1998).
  30. M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, N. Peyghambarian, "Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure," Appl. Phys. Lett. 89, 114105 (2006).
  31. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, G. L. P. Wang, P. S. Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, N. Peyghambarian, "An updatable holographic three-dimensional display," Nature 451, 694-698 (2007).
  32. S. A. Benton, Survey of Holographic Stereograms pp. 15-19 (1983).
  33. M. W. Halle, Holographic Stereograms as Discrete Imaging Systems 2176, 73-84 (1994).
  34. N. Cheng, B. Swedek, P. N. Prasad, "Thermal fixing of refractive index gratings in a photorefractive polymer," Appl. Phys. Lett. 71, 1828-1830 (1997).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited