OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 5, Iss. 12 — Dec. 1, 2009
  • pp: 431–437

Modeling Multiple Rare Earth-Doped System for White Light Generation

Chun Jiang and Wenbin Xu

Journal of Display Technology, Vol. 5, Issue 12, pp. 431-437 (2009)


View Full Text Article

Acrobat PDF (726 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A numerical model of Tm3+-Tb3+-Eu3+-co-doped system for white light generation is presented in this paper. The energy level, electron transition process and rate and power propagating equations are proposed to calculate fluorescence intensity of the system pumped by 359 nm laser. The numerical results reveal that our theoretical result is in good agreement with experimental result in literature. Optimal active ion concentrations are proposed for the system to emit red, blue and green lights which are mixed to generate white light for display and lighting system.

© 2009 IEEE

Citation
Chun Jiang and Wenbin Xu, "Modeling Multiple Rare Earth-Doped System for White Light Generation," J. Display Technol. 5, 431-437 (2009)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-5-12-431


Sort:  Year  |  Journal  |  Reset

References

  1. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Topics Quantum Electron. 8, 310-320 (2002).
  2. T. Jüstel, H. Nikol, C. Ronda, "New developments in the field of luminescent materials for lighting and displays," Angew. Chem. Int. Ed. 37, 3084-3103 (1998).
  3. S. Wen, "Representations of relative display gamut size," J. Display Technol. 4, 18-23 (2008).
  4. J. H. Park, A. J. Steckl, "Laser action in Eu-doped GaN thin-film cavity at room temperature," Appl. Phys. Lett. 85, 4588-4588 (2004).
  5. M. S. Shur, A. Žukauskas, "Solid-state lighting: Toward superior illumination," Proc. IEEE 93, 1691-1703 (2005).
  6. J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, G. C. Kim, "Warm-white-light emitting diode utilizing a single-phase full-color ${\hbox{Ba}}_{3}{\hbox{MgSi}}_{2}{\hbox{O}}_{8}:{\hbox{Eu}}^{2+}$, ${\hbox{Mn}}^{2+}$ phosphor," Appl. Phys. Lett. 84, 2931-2933 (2004).
  7. R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takashi, K. Sakuma, "Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors," Appl. Phys. Lett. 88, 101104-101104 (2006).
  8. J. Zhou, Z. Wu, Z. Zhang, W. Liu, H. Dang, "Study on an antiwear and extreme pressure additive of surface coated ${\hbox{LaF}}_{3}$ nanoparticles in liquid paraffin," Wear 249, 333-337 (2001).
  9. J. W. Stouwdam, F. C. J. M. van Veggel, "Improvement in the luminescence properties and process ability of ${\hbox{LaF}}_{3}/\ln $ and ${\hbox{LaPO}}_{4}/\ln $ nanoparticles by surface modification," Langmuir 20, 11763-11771 (2004).
  10. B. C. Joshi, "Enhanced ${\hbox{Eu}}^{3+}$ emission by non-radiative energy transfer from ${\hbox{Tb}}^{3+}$ in zinc phosphate glass," J. Non-Cryst. Solids 180, 217-220 (1995).
  11. J. Wang, S. Bo, L. Song, J. Hu, X. Liu, Z. Zhen, "One-step synthesis of highly water-soluble ${\hbox{LaF}}_{3}:{\hbox{Ln}}^{3+}$ nanocrystals in methanol without using any ligands," Nanotechnol. 18, 465605-465605 (2007).
  12. D. Ananias, L. de Carlos, J. Rocha, "Unusual full-colour phosphors: ${\hbox{Na}}_{3}\ln \hbox{-}\hbox{-}{\hbox{Si}}_{3}{\hbox{O}}_{9}$," Opt. Mater. 28, 582-586 (2006).
  13. C.-J. Duan, H.-H. Chen, X.-X. Yang, J.-T. Zhao, "Luminescence properties of ${\hbox{Eu}}^{3+}$, ${\hbox{Tb}}^{3+}$ or ${\hbox{Tm}}^{3+}$ activated ${\hbox{Ca}}_{4}{\hbox{GdO}}({\hbox{BO}}_{3})_{3}$ under X-ray and UV excitation," Opt. Mater. 28, 956-961 (2006).
  14. J. R. DiMaio, B. Kokuoz, J. Ballato, "White light emissions through down-conversion of rare-earth doped ${\hbox{LaF}}_{3}$ nanoparticles," Opt. Expr. 14, 11412-11417 (2006).
  15. J. Milliez, A. Rapaport, M. Bass, A. Cassanho, H. P. Jenssen, "High-brightness white-light source based on up-conversion phosphors," J. Display Technol. 2, 307-311 (2006).
  16. J. F. Suyver, A. Aebische, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, H. U. Güdel, "Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon up conversion," Opt. Mat. 27, 1111-1130 (2007).
  17. A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, E. Osiac, "Upconversion emission of ${\hbox{RE}}^{3+}$ in ${\hbox{Sc}}_{2}{\rm O}_{3}$ ceramic under 800 nm pumping," Opt. Mater. (2008).
  18. R. M. Percival, J. R. Williams, "Highly efficient 1.064 $\mu {\hbox{m}}$ upconversion pumped 1.47 $\mu {\hbox{m}}$ thulium doped fluoride fiber amplifier," Electron. Lett. 30, 1684-1685 (1994).
  19. W. B. Lozano, C. B. de Araujo, Y. Messaddeq, "Enhanced frequency up-conversion in ${\hbox{Er}}^{3+}$ doped fluoroindate glass due to energy transfer from ${\hbox{Tm}}^{3+}$," J. Non-Cryst. Solids. 311, 318-323 (2002).
  20. E. F. Schubert, J. K. Kim, "Solid-state light sources getting smart," Science 308, 1274-1278 (2005).
  21. G.-S. Yi, G.-M. Chow, "Colloidal ${\hbox{LaF}}_{3}$: Yb, Er, ${\hbox{LaF}}_{3}$: Yb, Ho and ${\hbox{LaF}}_{3}$: Yb, Tm nano-crystals with multicolor up-conversion fluorescence," J. Amer. Chem. Soc. 15, 4460-4464 (2005).
  22. S. Sivakumar, F. C. J. M. van Veggel, M. Raudsepp, "Bright white light through up-conversion of a single NIR source from Sol-Gel derived thin film made with $\ln ^{3+}$-doped ${\hbox{LaF}}_{3}$ nanoparticles," J. Amer. Chem. Soc. 127, 12464-12465 (2005).
  23. F. Wang, X. Liu, "Up-conversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped ${\hbox{NaYF}}_{4}$ nanoparticles," J. Amer. Chem. Soc. 130, 5642-5642 (2008).
  24. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, M. J. Suscavage, "Energy transfer between ${\hbox{Er}}^{3+}$ and ${\hbox{Tm}}^{3+}$ ions in a barium fluoride-thorium fluoride glass," Phys. Rev. B 39, 80-90 (1989).
  25. M. Karásek, "Optimum design of ${\hbox{Er}}^{3+}/{\rm Yb}^{3+}$ codoped fibers for large-signal high-pump-power applications," IEEE J. Quantum Electron. 33, 1699-1705 (1997).
  26. C. Jiang, F. Gan, J. Zhang, P. Deng, G. Huang, "Yb: Borate glass with high emission cross section," J. Solid State Chem. 144, 449-453 (1999).
  27. W. Ryba-Romanowski, M. Berkowski, B. Viana, P. Aschehoug, "Relaxation, dynamics of excited states of ${\hbox{Tm}}^{3+}$ in ${\hbox{SrGdGa}}_{3}{\rm O}_{7}$ crystals activated with ${\hbox{Tm}}^{3+}$ and ${\hbox{Tb}}^{3+}$," Appl. Phys. B 64, 525-529 (1997).
  28. E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, B. Sordo, "Thulium-doped telluride fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004).
  29. T. Kasamatsu, Y. Yano, T. Ono, "1.49-$\mu$m-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems," J. Lightw. Technol. 20, 1826-1838 (2002).
  30. L. Huang, A. Jha, S. Shen, X. Liu, "Broadband emission in ${\hbox{Er}}^{3+}\hbox{-}{\hbox{Tm}}^{3+}$ codoped tellurite fibre," Opt. Expr. 12, 2429-2434 (2004).
  31. H. Jeong, K. Oh, S. R. Han, T. F. Morse, "Characterization of broadband amplified spontaneous emission from a ${\hbox{Er}}^{3+}\hbox{-}{\hbox{Tm}}^{3+}$ co-doped silica fiber," Chem. Phys. Lett. 367, 507-512 (2003).
  32. S. Tanabe, K. Suzuki, N. Soga, T. Hanada, "Mechanisms and concentration dependence of ${\hbox{Tm}}^{3+}$ blue and ${\hbox{Er}}^{3+}$ green up-conversion in co-doped glasses by red-laser pumping," J. Lumin. 65, 247-253 (1995).
  33. X. Zou, A. Shikida, H. Yanagita, H. Toratani, "Mechanisms of upconversion fluorescences in ${\hbox{Er}}^{3+}$, ${\hbox{Tm}}^{3+}$ codoped fluorozircoaluminate glasses," J. Non-Cryst.Solids 181, 100-110 (1995).
  34. L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohis, T. Yamashita, Y. Akimoto, "Crystallization kinetics and spectroscopic investigations on ${\hbox{Tb}}^{3+}$ and ${\hbox{Yb}}^{3+}$ codoped glass ceramics containing ${\hbox{CaF}}_{2}$ nanocrystals," J. Appl. Phys. 102, 093506-093506 (2007).
  35. F. de Pasquale, M. Federighi, "Improved gain characteristics in high concentration ${\hbox{Er}}^{3+}/{\hbox{Yb}}^{3+}$ codoped glass waveguide amplifiers," IEEE J. Quantum Electron. 30, 2127-2131 (1994).
  36. M. Karasek, "Optimum design of ${\hbox{Er}}^{3+}\hbox{-}{\hbox{Yb}}^{3+}$ codoped fibers for large-signal high-pump-power applications," IEEE J. Quantum Electron. 33, 1699-1705 (1997).
  37. E. Yahel, A. A. Hendy, "Modeling and optimization of short ${\hbox{Er}}^{3+}\hbox{-}{\hbox{Yb}}^{3+}$ co-doped fiber lasers," IEEE J. Quantum Electron. 39, 1444-1451 (2003).
  38. F. X. Gan, Optical and Spectroscopic Properties of Glasses (Shanghai Science and Technology Press, 1992) pp. 245-246.
  39. S. Shen, A. Jha, X. Liu, M. Nataly, "Telluride glasses for broadband amplifiers and integrated optics," J. Amer. Ceram. Soc. 85, 1391-95 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited