OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 5, Iss. 12 — Dec. 1, 2009
  • pp: 446–451

Intrinsic Polarization of Self-Assembled Guanosine Supramolecules in GaN-Based Metal–Semiconductor–Metal Nano-Structures

Jianyou Li, Abhijit Sarkar, Hadis Morkoc, and Arup Neogi

Journal of Display Technology, Vol. 5, Issue 12, pp. 446-451 (2009)

View Full Text Article

Acrobat PDF (666 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The transport properties of self-assembled guanosine supramolecules (SAGS) confined within nanoscale metal electrodes on transparent GaN semiconductor substrates have been studied. The modified guanosine molecules have been used as self-assembled nanowires to realize nanoscale UV-Visible photodetectors with self-assembly length ranging from 30 to 450 nm. The ribbon-like guanosine supramolecules exhibit semiconductor properties and have polarization along its axis due to the strong intrinsic dipole moment of guanosine molecules. The charge transport through the SAGS wire with nanoscale metal-semiconductor-metal structure on passivated Ga-terminated GaN surface can be explained by Schottky type conductivity and near-surface-states. The intrinsic polarization in SAGS nano-wires changes the band-offset at the metal-semiconductor interface similar to semiconductor photodiodes.

© 2009 IEEE

Jianyou Li, Abhijit Sarkar, Hadis Morkoc, and Arup Neogi, "Intrinsic Polarization of Self-Assembled Guanosine Supramolecules in GaN-Based Metal–Semiconductor–Metal Nano-Structures," J. Display Technol. 5, 446-451 (2009)

Sort:  Year  |  Journal  |  Reset


  1. F. Broitman, J. B. Trent, M. H. Klapper, "One-electron oxidation reactions of some purine and pyrimidine bases in aqueous solutions. electrochemical and pulse radiolysis studies," J. Phys. Chem. 100, 14751-14761 (1996).
  2. V. Bhalla, R. P. Bajpai, L. M. Bharadwaj, "DNA electronics," EMBO Reps. 4, 442-442 (2003).
  3. G. Maruccio, P. Visconti, V. Arima, S. D'Amico, A. Biasco, E. D'Amone, R. Cingolani, R. Rinaldi, S. Masiero, T. Giorgi, G. Gottarelli, "Field effect transistor based on a modified DNA base," Nano Lett. 3, 479-483 (2003).
  4. R. Rinaldi, E. Branca, R. Cingolani, S. Masiero, G. P. Spada, G. Gottarelli, "Photodetectors fabricated from a self-assembly of a deoxyguanosine derivative," Appl. Phys. Lett. 78, 3541-3543 (2001).
  5. H. Liddar, J. Li, A. Neogi, P. B. Neogi, A. Sarkar, S. Cho, H. Morkoç, "Self-assembled deoxyguanosine based molecular electronic device on GaN substrates," Appl, Phys. Lett. 92, 013309-013309 (2008).
  6. G. Gottarelli, S. Masiero, E. Mezzina, S. Pieraccini, J. P. Rabe, P. Samorí, G. P. Spada, "The self-assembly of lipophilic guanosine derivatives in solution and on solid surfaces," Chem.-Eur. J. 6, 3242-3248 (2000).
  7. R. Rinaldi, G. Maruccio, A. Biasco, V. Arima, R. Cingolani, T. Giorgi, S. Masiero, G. P. Spada, G. Gottarelli, "Hybrid molecular electronic devices based on modified deoxyguanosines," Nanotechnology 13, 398-403 (2002).
  8. P. Samorí, S. Pieraccini, S. Masiero, G. P. Spada, G. Gottarelli, J. P. Rabe, "Controlling the Self-Assembly of a Deoxiguaninosine on Mica," Colloids and Surfaces B: Biointerfaces 23, 283-288 (2002).
  9. R. G. Endres, D. L. Cox, R. R. P. Singh, "Colloquium: The quest for high-conductance DNA," Rev. Mod. Phys. 76, 195-214 (2004).
  10. R. Rinaldi, E. Branca, R. Cingolani, R. D. Felice, A. Calzolari, E. Molinari, S. Masiero, G. Spada, G. Gottarelli, A. Garbesi, "Biomolecular electronic devices based on self-organized deoxyguanosine nanocrystals," Ann. New York Acad. of Sciences 960, 184-192 (2002).
  11. F. Bernardini, V. Fiorentini, "Macroscopic polarization and band offsets at nitride heterojunctions," Phys. Rev. B 57, R9427-R9430 (1998).
  12. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  13. S. M. Sze, D. J. Coleman, A. Loya, "Current transport in metal–semiconductor–metal (MSM) structures," Solid-State Electron. 14, 1209-1218 (1971).
  14. W. J. Mönch, "Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities," Vac. Sci. Technol. B 17, 1867-1876 (1999).
  15. O. Cojocari, H. L. Hartnagel, "Generalized model of the metal/N-GaN Schottky interface and improved performance by electrochemical Pt deposition," J. Vac. Sci. Technol. B 24, 2544-2552 (2006).
  16. U. Karrer, O. Ambacher, M. Stutzmann, "Influence of crystal polarity on the properties of Pt/GaN Schottky diodes," Appl. Phys. Lett 77, 2012-2014 (2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited