Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 5,
  • Issue 12,
  • pp. 462-467
  • (2009)

Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model

Not Accessible

Your library or personal account may give you access

Abstract

Electronic structures and carrier transport mechanisms in disordered oxide semiconductors, crystalline InGaO<sub>3</sub>(ZnO)<sub><i>m</i></sub> (<i>m</i> = 1,5) (c-IGZO)and amorphous InGaZnO<sub>4</sub> (a-IGZO), are examined based on a percolation conduction model. Donor levels (E<sub>d</sub>) and densities (<i>N</i><sub>D</sub>) are estimated by numerical calculations of free electron densities (<i>n</i><sub>e</sub>) obtained by Hall measurements. It shows that the donor levels are rather deep, ~0.15 eV for c-IGZO and ~0.11 eV for a-IGZO. This analysis indicates that use of a simple analytical relation of <i>n</i><sub>e</sub> exp(-<i>E<sub>d</sub></i>/2<i>kT</i> can not always be used to estimate <i>E<sub>d</sub></i> and <i>N<sub>D</sub></i> even for a low <i>n<sub>e</sub></i> film because the film can be in the saturation regime at room temperature if <i>E<sub>d</sub></i> and <i>N<sub>D</sub></i> are small, which is actually the case for a-IGZO. The temperature dependences of electron mobilities are analyzed using an analytical equation of the percolation conduction model, which reveals that distributed potential barriers exist above mobility edges in IGZO with average heights 30–100 meV and distribution widths 5–20 meV, which depend on atomic structure and deposition condition of IGZO films. High-quality a-IGZO films have the lowest potential barriers among the IGZO films examined, in spite that a-IGZO has a more disordered amorphous structure than c-IGZO have. It is explained by the partly disordered structure of c-IGZO.

© 2009 IEEE

PDF Article
More Like This
Amorphous In2Ga2ZnO7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering

Xianjie Zhou, Jiwen Xu, Ling Yang, Xiaosheng Tang, Qiuping Wei, and Zhiming Yu
Opt. Mater. Express 5(7) 1628-1634 (2015)

Optical and electrical properties of In2MgO4 thin film for transistors

Jian Ke Yao, Fan Ye, and Ping Fan
Opt. Mater. Express 8(11) 3438-3446 (2018)

Ultraviolet laser damage mechanisms of amorphous InGaZnO4 thin films

Jian Ke Yao, Fan Ye, and Ping Fan
Opt. Mater. Express 9(6) 2545-2552 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved