OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 5, Iss. 12 — Dec. 1, 2009
  • pp: 495–500

MOSFET-Like Behavior of a-InGaZnO Thin-Film Transistors With Plasma-Exposed Source–Drain Bulk Region

Jaewook Jeong, Yongtaek Hong, Jae Kyeong Jeong, Jin-Seong Park, and Yeon-Gon Mo

Journal of Display Technology, Vol. 5, Issue 12, pp. 495-500 (2009)


View Full Text Article

Acrobat PDF (972 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we analyzed electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with plasma-exposed source–drain (S/D) bulk region. The parasitic resistance and effective channel length characteristics exhibit similar behavior with that of crystalline silicon metal oxide-semiconductor field effect transistor (c-Si MOSFET) that has doped S/D bulk region. The transfer curves little changed with gate overlap variation, and the width-normalized parasitic resistance obtained from transmission line method was as low as 3 to 6 Ω· cm. The effective channel length was shorter than the mask channel length and showed gate-to-source (V<sub>GS</sub>) voltage dependency that is frequently observed for lightly doped drain (LDD) MOSFET. Experimental and simulation results showed that the plasma exposure caused an LDD-like doping effect in the S/D bulk region by inducing oxygen vacancy in the a-IGZO layer.

© 2009 IEEE

Citation
Jaewook Jeong, Yongtaek Hong, Jae Kyeong Jeong, Jin-Seong Park, and Yeon-Gon Mo, "MOSFET-Like Behavior of a-InGaZnO Thin-Film Transistors With Plasma-Exposed Source–Drain Bulk Region," J. Display Technol. 5, 495-500 (2009)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-5-12-495


Sort:  Year  |  Journal  |  Reset

References

  1. B. Hekmatshoar, K. H. Cherenack, A. Z. Kattamis, K. Long, S. Wagner, J. C. Sturm, "Highly stable amorphous-silicon thin-film transistors on clear plastic," Appl. Phy. Lett. 93, 032103-1-032103-3 (2008).
  2. M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, "Polysilicon TFT technology for active matrix OLED displays," IEEE Electron Devices Lett. 48, 845-851 (2001).
  3. J. K. Jeong, H.-J. Chung, Y.-G. Mo, H. D. Kim, "Comprehensive study on the transport mechanism of amorphous indium-gallium-zinc oxide transistors," J. Electron. Chem. Soc. 155, H873-H877 (2008).
  4. M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, "High mobility bottom gate InGaZnO thin film transistors with SiO$_x$ etch stopper," Appl. Phys. Lett. 90, 212114 1-212114 3 (2007).
  5. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, "High-mobility thin-film transistor with amorphous InGaZnO$_{4}$ channel fabricated by room temperature rf-magnetron sputtering," Appl. Phys. Lett. 89, 112123 1-112123 3 (2006).
  6. H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J. Non-Cryst. Solids 352, 851-858 (2006).
  7. H.-C. Yuan, G. K. Celler, Z. Ma, "7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate," J. Appl. Phys. 102, 034501 1-034501 4 (2007).
  8. R. A. Street, "Doping and the fermi energy in amorphous silicon," Phys. Rev. Lett. 49, 1187-1190 (1982).
  9. J. Kanicki, F. R. Libsch, J. Griffith, R. Polastre, "Performance of thin hydrogenated amorphous silicon thin-film transistors," J. Appl. Phys. 69, 2339-2345 (1991).
  10. K. Terada, H. Muta, "A new method to determine effective MOSFET channel length," Jpn. J. Appl. Phys. 18, 953-959 (1979).
  11. S. Luan, G. W. Neudeck, "An experimental study of the source/drain parasitic resistance effects in amorphous silicon thin film transistors," J. Appl. Phys. 72, 766-772 (1992).
  12. J. Jeong, Y. Hong, S. H. Beak, L. Tutt, M. Burburry, "Modeling and numerical analysis for wavy edge in printed source and drain electrodes of thin film transistors," Electron. Lett. 44, 616-618 (2008).
  13. S. Martin, C.-S. Chiang, J.-Y. Nahm, T. Li, J. Kanicki, Y. Ugai, "Influence of the amorphous silicon thickness on top gate thin-film transistor electrical performances," Jpn. J. Appl. Phys. 40, 530-537 (2001).
  14. G. J. Hu, C. Chang, Y.-T. Chia, "Gate-voltage-dependent effect channel length and series resistance of LDD MOSFET's," IEEE Trans. Electron Devices ED-34, 2469-2475 (1987).
  15. Y. Taur, "MOSFET channel length: Extraction and interpretation," IEEE Trans. Electron Devices 47, 160-170 (2000).
  16. Atlas User's Manual Silvaco Int. Inc.Santa ClaraCA (2008).
  17. H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, C.-C. Wu, "Modeling of amorphous InGaZnO$_4$ thin film transistors and their subgap density of states," Appl. Phys. Lett. 92, 133503-1-133503-3 (2008).
  18. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO$_{4}$," Thin Solid Films 486, 38-41 (2005).
  19. B. D. Ahn, H. S. Shin, G. H. Kim, T. H. Jeong, H. J. Kim, "A novel amorphous-InGaZnO TFT structure without source/drain layer deposition," AM-FPD 08 Dig. Tech. Papers (2008) pp. 299-302.
  20. J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, "Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment," Appl. Phys. Lett. 90, 262106-1-262106-3 (2007).
  21. C. G. Van de Walle, "Hydrogen as a cause of doping in zinc oxide," Phys. Rev. Lett. 85, 1012-1015 (2000).
  22. B. D. Ahn, H. S. Shin, H. J. Kim, J.-S. Park, J. K. Jeong, "Comparison of the effects of Ar and H$_{2}$ plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors," Appl. Phys. Lett. 93, 203506-1-203506-3 (2008).
  23. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature 423, 488-492 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited