Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 5,
  • Issue 12,
  • pp. 495-500
  • (2009)

MOSFET-Like Behavior of a-InGaZnO Thin-Film Transistors With Plasma-Exposed Source–Drain Bulk Region

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we analyzed electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with plasma-exposed source–drain (S/D) bulk region. The parasitic resistance and effective channel length characteristics exhibit similar behavior with that of crystalline silicon metal oxide-semiconductor field effect transistor (c-Si MOSFET) that has doped S/D bulk region. The transfer curves little changed with gate overlap variation, and the width-normalized parasitic resistance obtained from transmission line method was as low as 3 to 6 Ω· cm. The effective channel length was shorter than the mask channel length and showed gate-to-source (V<sub>GS</sub>) voltage dependency that is frequently observed for lightly doped drain (LDD) MOSFET. Experimental and simulation results showed that the plasma exposure caused an LDD-like doping effect in the S/D bulk region by inducing oxygen vacancy in the a-IGZO layer.

© 2009 IEEE

PDF Article
More Like This
Effects of source/drain electrode contact length on the photoresponsive properties of organic field-effect transistors

Sunan Xu, Hongquan Xia, Fangzhi Guo, Yuhuan Yang, Yingquan Peng, Wenli Lv, Xiao Luo, Ying Wang, Zouyu Yang, and Lei Sun
Opt. Mater. Express 8(4) 901-908 (2018)

Optical and electrical properties of In2MgO4 thin film for transistors

Jian Ke Yao, Fan Ye, and Ping Fan
Opt. Mater. Express 8(11) 3438-3446 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved