OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 5, Iss. 12 — Dec. 1, 2009
  • pp: 515–519

Self-Aligned Top-Gate Coplanar In-Ga-Zn-O Thin-Film Transistors

Cheng-Han Wu, Hsing-Hung Hsieh, Chih-Wei Chien, and Chung-Chih Wu

Journal of Display Technology, Vol. 5, Issue 12, pp. 515-519 (2009)

View Full Text Article

Acrobat PDF (741 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Self-aligned techniques are often used in conventional CMOS and Si-based thin-film transistors (TFTs) technologies due to various merits. In this paper, we report self-aligned coplanar top-gate InGaZnO TFTs using PECVD a-SiNx:H patterned to have low hydrogen content in the channel region and high hydrogen content in the source/drain region. After annealing to induce hydrogen diffusion from a-SiNx:H into the oxide semiconductor, the source–drain regions become more conductive and yet the channel region remains suitable for TFT operation, yielding a working self-aligned TFT structure. Such fabrication involves neither back-side exposure nor ion implantation, and thus may be compatible with the typical and cost-effective TFT manufacturing.

© 2009 IEEE

Cheng-Han Wu, Hsing-Hung Hsieh, Chih-Wei Chien, and Chung-Chih Wu, "Self-Aligned Top-Gate Coplanar In-Ga-Zn-O Thin-Film Transistors," J. Display Technol. 5, 515-519 (2009)

Sort:  Year  |  Journal  |  Reset


  1. C. R. Kagan, P. Andry, IBM T. . Watson Res. Ctr.Yorktown HeightsNYThin-film transistor (2003).
  2. H. Hosono, M. Yasukawa, H. Kawazoe, "Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides," J. Non-Cryst. Solids 203, 334-344 (1996).
  3. H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, "Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples," J. Non-Cryst. Solids 200, 165-169 (1996).
  4. H. Hideo, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J. Non-Cryst. Solids 352, 851-858 (2006).
  5. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "Carrier transport and electronic structure in amorphous oxide semiconductor, a-${\hbox{InGaZnO}}_{4}$," Thin Solid Films 486, 38-41 (2005).
  6. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, "Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor," Science 300, 1269-1272 (2003).
  7. J. M. Pimbley, M. Ghezzo, "Self-aligned ion implant masking for CMOS VLSI technology," IEEE Electron Device Lett. EDL-3, 99-100 (1982).
  8. C. S. Yang, W. W. Read, C. B. Arthur, G. N. Parsons, "Comparison of conventional and self-aligned a-Si:H thin film transistors," Flat Panel Display Materials III 471, 179-184 (1997).
  9. C. S. Yang, W. W. Read, C. Arthur, E. Srinivasan, G. N. Parsons, "Self-aligned gate and source drain contacts in inverted-staggered a-Si : H thin-film transistors fabricated using selective area silicon PECVD," IEEE Electron Device Lett. 19, 180-182 (1998).
  10. M. Matsuo, T. Nakazawa, H. Ohshima, "Low-temperature activation of impurities implanted by ion doping technique for poly-Si thin-film transistors," Jpn. J. Appl. Phys. 31, 4567-4569 (1992).
  11. C. C. Tsai, H. H. Chen, B. T. Chen, H. C. Cheng, "High-performance self-aligned bottom-gate low-temperature poly-silicon thin-film transistors with excimer laser crystallization," IEEE Electron Device Lett. 28, 599-602 (2007).
  12. A. Sato, K. Abe, R. Hayashi1, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, "Amorphous In-Ga-Zn-O coplanar homojunction thin-film transistors," Appl. Phys. Lett. 94, 133502 (2009).
  13. C. H. Seager, S. M. Myers, "Quantitative comparisons of dissolved hydrogen density and the electrical and optical properties of ZnO," J. Appl. Phys. 94, 2888 (2003).
  14. J. Park, I. Song, S. Kim, S. Kim, C. Kim, J. Lee, H. Lee, E. Lee, H. Yin, K.-K. Kim, K.-W. Kwon, Y. Park, "Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors," Appl. Phys. Lett. 93, 053501 (2008).
  15. R. Kariyadan, Dae-Kue, Park, Seong-Ju, Jang, Jae-Hyung, "Impact of hydrogenation of ZnO TFTs by plasma-deposited silicon nitride gate dielectric," IEEE Transactions on Electron Devices 55, 2736-2743 (2008).
  16. J. R. Flemish, R. L. Pfeffer, "Low hydrogen content silicon nitride films from electron cyclotron resonance plasmas," J. Appl. Phys. 74, (1993).
  17. Y. W. Park, S. C. Choi, S. J. Yoon, H. J. Kim, S. K. Koh, H. J. Jung, "Characteristics of ZnO thin film by ion-beam sputter deposition," Journal of the Korean Physical Society 32, S1700-S1703 (1998).
  18. H. Dun, P. Pan, F. R. White, R. W. Douse, "Mechanisms of plasma-enhanced silicon nitride deposition using ${\hbox{SiH}} _{4} /{\hbox{N}} _{2}$ mixture," J. Electrochem. Soc. 128, 1555 (1981).
  19. D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, D. H. Yoon, "Refractive index properties of SiN thin films and fabrication of SiN optical waveguide," J Electroceram 17, 315-318 (2006).
  20. R. L. Hoffman, "Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors," Solid-State Electron. 50, 784-787 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited