OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 5, Iss. 4 — Apr. 1, 2009
  • pp: 111–119

Using Commodity Graphics Hardware for Real-Time Digital Hologram View-Reconstruction

Lukas Ahrenberg, Andrew J. Page, Bryan M. Hennelly, John B. McDonald, and Thomas J. Naughton

Journal of Display Technology, Vol. 5, Issue 4, pp. 111-119 (2009)

View Full Text Article

Acrobat PDF (1332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


View-reconstruction and display is an important part of many applications in digital holography such as computer vision and microscopy. Thus far, this has been an offline procedure for megapixel sized holograms. This paper introduces an implementation of real-time view-reconstruction using programmable graphics hardware. The theory of Fresnel-based view-reconstruction is introduced, after which an implementation using stream programming is presented. Two different fast Fourier transform (FFT)-based reconstruction methods are implemented, as well as two different FFT strategies. The efficiency of the methods is evaluated and compared to a CPU-based implementation, providing over 100 times speedup for a hologram size of 2048$\times$2048.

© 2009 IEEE

Lukas Ahrenberg, Andrew J. Page, Bryan M. Hennelly, John B. McDonald, and Thomas J. Naughton, "Using Commodity Graphics Hardware for Real-Time Digital Hologram View-Reconstruction," J. Display Technol. 5, 111-119 (2009)

Sort:  Year  |  Journal  |  Reset


  1. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
  2. E. N. Leith, J. Upatnieks, "Reconstructed waefronts and communications theory," JOSA 52, 1123-1130 (1962).
  3. J. W. Goodman, R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Physics Lett. 11, 77-79 (1967).
  4. M. A. Kronrod, N. S. Merzlyakov, L. P. Yaroslavskii, "Reconstruction of a hologram with a computer," Sov. Phys. Tech. Phys. 17, 333-+ (1972).
  5. U. Schnars, W. P. Juptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
  6. Y. Frauel, T. J. Naughton, O. Matoba, E. e. Tajahuerce, B. Javidi, "Three-dimensional imaging and processing using computational holographic imaging," Proc. IEEE 94, 636-653 (2006).
  7. U. Gopinathan, D. Monaghan, B. Hennelly, C. McElhinney, D. Kelly, J. McDonald, T. Naughton, J. Sheridan, "A projection system for real world three-dimensional objects using spatial light modulators," J. Display Technol. 4, 254-261 (2008).
  8. Y. Frauel, E. Tajahuerce, M.-A. Castro, B. Javidi, "Distortion-tolerant three-dimensional object recognition with digital holography," Appl. Opt. 40, 3887-3893 (2001).
  9. T. J. Naughton, Y. Frauel, B. Javidi, E. Tajahuerce, "Compression of digital holograms for three-dimensional object reconstruction and recognition," Appl. Opt. 41, 4124-4132 (2002).
  10. B. Javidi, S. Yeom, I. Moon, M. Daneshpanah, "Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events," Opt. Express 14, 3806-3829 (2006).
  11. M. DaneshPanah, B. Javidi, "Tracking biological microorganisms in sequence of 3d holographic microscopy images," Opt. Express 15, 10 761-10 766 (2007).
  12. C. P. McElhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, T. J. Naughton, "Depth-independent segmentation of macroscopic three-dimensional objects encoded in single perspectives of digital holograms," Opt. Lett. 32, 1229-1231 (2007).
  13. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  14. B. Hennelly, J. Sheridan, "Fast numerical algorithm for the linear canonical transform," JOSA A 22, 928-937 (2005).
  15. B. M. Hennelly, J. T. Sheridan, "Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms," J. Opt. Soc. Amer. A 22, 917-927 (2005).
  16. A. J. Page, L. Ahrenberg, T. J. Naughton, "Low memory distributed reconstructionof large digital holograms," Opt. Express 16, 1990-1995 (2008).
  17. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, T. Ito, "Real-time digital holographic microscopy using the graphic processing unit," Opt. Express 16, 11 776-11 781 (2008).
  18. T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, T. Sugie, "Special-purpose computer horn-5 for a real-time electroholography," Opt. Express 13, 1923-1932 (2005).
  19. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, T. Sugie, "Computer generated holography using a graphics processing unit," Opt. Express 14, 603-608 (2006).
  20. L. Ahrenberg, P. Benzie, M. Magnor, J. Watson, "Computer generated holography using parallel commodity graphics hardware," Opt. Express 14, 7636-7641 (2006).
  21. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, W. Osten, "Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers," Appl. Opt. 45, 888-896 (2006).
  22. T. Haist, M. Reicherter, M. Wu, L. Seifert, "Using graphics boards to compute holograms," Computing in Sci. Eng. 8, 8-13 (2006).
  23. U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, J. D. Owens, "Programmable stream processors," IEEE Computer 54-62 (2003).
  24. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, P. Hanrahan, "Brook for GPUs: Stream computing on graphics hardware," ACM SIGGRAPH'04 Papers (2004) pp. 777-786.
  25. NVIDIA CUDA Computer Unified Device Architecture Programming Guide (Nvidia, 2007).
  26. U. Schnars, W. Jueptner, Digital Holography (Springer, 2005).
  27. T. Kreis, Handbook of Holographic Interfereometry (Wiley-VCH, 2005).
  28. J. D. Owens, S. Sengupta, D. Horn, Assessment of graphic processing units (GPUs) for Department of Defense (DoD) digital signal processing (DSP) applications Dep. Elect. Comput. Eng., Univ. CaliforniaDavis (2005) Tech. Rep. ECE-CE-2005–3.
  29. T. Jansen, B. von Rymon-Lipinski, N. Hanssen, E. Keeve, "Fourier volume rendering on the GPU using a split-stream-FFT," 9th Int. Vision, Modeling, and Visualization (2004) pp. 395-403.
  30. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, P. Hanrahan, ACM SIGGRAPH '04 (ACM, 2004) pp. 777-786.
  31. CUDA CUFFT Library (Nvidia, 2007).
  32. M. Frigo, S. G. Johnson, "The design and implementation of FFTW3," Proc. IEEE 93, 216-231 (2005).
  33. R. W. Gerchberg, W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 227-246 (1972).
  34. J. R. Fienup, "Phase retrieval algorithms: A comparison," Appl. Opt. 21, 2758 (1982).
  35. G. Liu, P. D. Scott, "Phase retrieval and twin-image elimination for in-line Fresnel holograms," J. Opt. Soc. Amer. A 4, 159 (1987).
  36. T. Latychevskaia, H.-W. Fink, "Solution to the twin image problem in holography," Phys. Rev. Lett. 98, (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited