OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 6, Iss. 10 — Oct. 1, 2010
  • pp: 506–509

Compressive Fresnel Holography

Yair Rivenson, Adrian Stern, and Bahram Javidi

Journal of Display Technology, Vol. 6, Issue 10, pp. 506-509 (2010)


View Full Text Article

Acrobat PDF (829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Compressive sensing is a relatively new measurement paradigm which seeks to capture the “essential” aspects of a high-dimensional object using as few measurements as possible. In this work we demonstrate successful application of compressive sensing framework to digital Fresnel holography. It is shown that when applying compressive sensing approach to Fresnel fields a special sampling scheme should be adopted for improved results.

© 2010 IEEE

Citation
Yair Rivenson, Adrian Stern, and Bahram Javidi, "Compressive Fresnel Holography," J. Display Technol. 6, 506-509 (2010)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-6-10-506


Sort:  Year  |  Journal  |  Reset

References

  1. E. Candès, J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Problems 23, 969-985 (2007).
  2. E. Candes, M. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag. 25, 21-30 (2008).
  3. A. Stern, B. Javidi, "Random projections imaging with extended space-bandwidth product," J. Display Technol. 3, 315-320 (2007).
  4. R. Fergus, A. Torralba, W. T. Freeman, “Random lens imaging,” Computer Science and Artificial Intell. Lab., MITCambridgeMA Tech. Rep. MIT-CSAIL-TR-2006-058 (2006).
  5. A. Stern, "Compressed imaging with linear sensors," Opt. Lett. 32, 3077-2079 (2007).
  6. R. Marcia, R. Willett, "Compressive coded aperture superresolution image reconstruction," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., ICASSP (2008).
  7. D. Brady, K. Choi, D. Marks, R. Horisaki, S. Lim, "Compressive holography," Opt. Express 17, 13040-13049 (2009).
  8. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
  9. F. Dubois, L. Joannes, J.-C. Legros, "Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
  10. Y. Zhang, G. Pedrini, W. Osten, H. J. Tiziani, "Reconstruction of in-line digital holograms from two intensity measurements," Opt. Lett. 29, 1787-1789 (2004).
  11. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004).
  12. E. Cuche, F. Bevilacqua, C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
  13. Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, B. Javidi, "Three dimensional imaging and display using computational holographic imaging," Proc. IEEE 94, 636-654 (2006).
  14. A. M. Bruckstein, M. Elad, M. Zibulevsky, "A non-negative and sparse enough solution of an underdetermined linear system of equations is unique," IEEE Trans. Inf. Theory 54, 4813-4820 (2008).
  15. I. Yamaguchi, T. Zhang, "Phase –shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
  16. I. Moon, M. Daneshpanah, B. Javidi, A. Stern, "Automated three dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy," Proc. IEEE 97, 990-1010 (2009).
  17. M. Lustig, Sparse MRI Ph.D. dissertation Dept. Elect. Eng., Stanford Univ.Palo AltoCA (2008).
  18. A. Lohmann, M. E. Testorf, J. Ojeda-Castaneda, The Art and Science of Holography, A Tribute to Elmmett Leith and Yuri Denisyuk (SPIE Press, 2004) pp. 129-144.
  19. Z. Zalevsky, D. Mendlovic, A. W. Lohmann, "Understanding superresolution in Wigner space," J. Opt. Soc. Amer. A 17, 2422-2430 (2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited