OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 6, Iss. 10 — Oct. 1, 2010
  • pp: 510–516

Materials for an Updatable Holographic 3D Display

Cory W. Christenson, Pierre-Alexandre Blanche, Savas Tay, Ram Voorakaranam, Tao Gu, Weiping Lin, Peng Wang, Michiharu Yamamoto, Jayan Thomas, Robert A. Norwood, and Nasser Peyghambarian

Journal of Display Technology, Vol. 6, Issue 10, pp. 510-516 (2010)


View Full Text Article

Acrobat PDF (1223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Holography is a powerful technique for providing high-resolution, realistic three-dimensional (3D) images without the need for special eyewear. A material that takes full advantage of the potential of holography, including updatability, has not existed. Here, the first updatable holographic 3D display based on a photorefractive polymer is summarized. The performance characteristics of these materials are measured, and how they relate to the development of additional display enhancements such as pulsed writing, white light viewing, and large viewing angle, are discussed.

© 2010 IEEE

Citation
Cory W. Christenson, Pierre-Alexandre Blanche, Savas Tay, Ram Voorakaranam, Tao Gu, Weiping Lin, Peng Wang, Michiharu Yamamoto, Jayan Thomas, Robert A. Norwood, and Nasser Peyghambarian, "Materials for an Updatable Holographic 3D Display," J. Display Technol. 6, 510-516 (2010)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-6-10-510


Sort:  Year  |  Journal  |  Reset

References

  1. M. R. Chatterjee, S. Chen, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006) pp. 379-425.
  2. S. Pastoor, 3D Video Communication (Wiley, 2005) pp. 251-425.
  3. K. Iizuka, "Welcome to the wonderful world of 3D: Introduction, principles and history," Opt. Photon. News 17, 42-51 (2006).
  4. N. A. Dodgson, "Autostereoscopic 3D displays," Computer 38, 31-36 (2005).
  5. G. E. Favalora, "Volumetric 3D displays and application in infrastructure," Computer 38, 37-44 (2005).
  6. E. Downing, L. Hesselink, J. Ralston, R. A. Macfarlane, "Three-color, solid-state, three-dimensional display," Science 273, 1185-1189 (1996).
  7. J. R. Thayn, J. Ghrayeb, D. G. Hopper, "3-d display design concept for cockpit and mission crewstations," Proc. SPIE 3690, 180-186 (1999).
  8. K. Choi, J. Kim, Y. Lim, B. Lee, "Full parallax, viewing-angle enhanced computer generated holographic 3D display system using integral lens array," Opt. Exp. 13, 10494-10502 (2005).
  9. D. Miyazaki, K. Shiba, K. Sotsuka, K. Matsushita, "Volumetric display system based on three-dimensional scanning of inclined optical image," Opt. Exp. 14, 12760-12769 (2006).
  10. S. A. Benton, Selected Papers on Three-Dimensional Displays (SPIE, 2001).
  11. L. A. Lessard, H. I. Bjelkhagen, Proc. SPIE 6488, Practical Holography: XXI: Materials and Applications (Special Issue) (2007).
  12. S. A. Benton, V. M. Bove, JrHolographic Imaging (Wiley, 2008).
  13. M. A. Klug, C. Newswanger, Q. Huang, M. E. Holzbach, Active Digital Hologram Display U.S. Patent 7 227 674 (2007).
  14. P. St.-Hilaire, M. Lucente, S. A. Benton, "Synthetic aperture holography: A novel approach to three dimensional displays," J. Opt. Soc. Amer. A. 9, 1969-1978 (1992).
  15. M. Lucente, Diffraction-specific fringe computation for electroholography Ph.D. dissertation Dept. Elect. Eng. Comput. Sci. MITCambridge (1994).
  16. C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, "Recent developments in computer-generated holography: Toward a practical electroholography system for interactive 3D visualization," Proc. SPIE 5290, 27-41 (2004).
  17. M. L. Huebschman, B. Munjuluri, H. R. Garner, "Dynamic holographic 3-d image projection," Opt. Exp. 11, 437-445 (2003).
  18. S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, "Observation of the photorefractive effect in a polymer," Phys. Rev. Lett. 66, 1846-1949 (1991).
  19. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, "Photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994).
  20. S. R. Marder, B. Kippelen, A. K.-Y. Jen, N. Peyghambarian, "Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications," Nature 388, 845-851 (1997).
  21. B. Kippelen, K. Meerholz, N. Peyghambarian, Nonlinear Optics of Organic Molecules and Polymers (CRC Press, 1997) pp. 465-513.
  22. P.-A. Blanche, B. Kippelen, A. Schulzgen, C. Fuentes-Hernandez, G. Ramos-Ortiz, J. F. Wang, E. Hendrickx, N. Peyghambarian, S. R. Marder, "Photorefractive polymers sensitized by two-photon absorption," Opt. Lett. 27, 19-21 (2002).
  23. O. Ostroverkhova, W. E. Moerner, "Organic photorefractives: Mechanisms, materials, and applications," Chem. Rev. 104, 3267-3314 (2004).
  24. E. Mecher, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature 418, 959-964 (2002).
  25. W. E. Moerner, A. Grunnet-Jepsen, "Recent advances in high gain photorefractive polymers," Proc. IEEE LEOS 10th Annu. Meeting (1997) pp. 38-39.
  26. B. L. Volodin, B. Kippelen, K. Meerholz, N. Peyghambarian, B. A. Javidi, "Polymer optical pattern-recognition system for security verification," Nature 383, 58-60 (1996).
  27. S. Tay, "Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm," Appl. Phys. Lett. 85, 4561-4563 (2004).
  28. B. Kippelen, "Near infrared photorefractive polymers and their application for imaging," Science 279, 54-57 (1998).
  29. M. Eralp, "Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure," Appl. Phys. Lett. 89, 1104105-1104105 (2006).
  30. S. Tay, "An updatable holographic three-dimensional display," Nature 451, 694-698 (2007).
  31. P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, P. Wang, M. Yamamoto, J. Thomas, R. A. Norwood, N. Peyghambarian, "An updatable holographic display for 3D visualization," J. Display Technol. 4, 424-430 (2008).
  32. J. Thomas, "Bistriarylamine polymer-based composites for photorefractive applications," Adv. Mater. 16, 2032-2036 (2004).
  33. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, "Amplified scattering in a high-gain photorefractive polymer," J. Opt. Soc. Amer. B 15, 901-904 (1998).
  34. O. Ostroverkhova, K. D. Singer, "Space-charge dynamics in photorefractive polymers," J. Appl. Phys. 92, 1727-1743 (2002).
  35. G. Bäuml, S. Schloter, U. Hofmann, D. Haarer, "Correlation between photoconductivity and holographic response time in a guest host polymer," Opt. Commun. 154, 75-78 (1998).
  36. M. Faraday, "Experimental researches in electricity: Eleventh series," Proc. Philosoph. Trans. Roy. Soc. () pp. 1-40.
  37. A. Grunnet-Jepsen, "Spectroscopic determination of trap density in ${\rm C}_60$-sensitized photorefractive polymers," Chem. Phys. Lett. 291, 553-561 (1998).
  38. W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, "Orientationally enhanced photorefractive effect in polymers," J. Opt. Soc. Amer. B 11, 320-330 (1994).
  39. J. A. Quintana, "Photoefractive properties of an unsensitized polymer composite based on a dicyanostyrene derivative as nonlinear optical chromophore," Appl. Phys. Lett. 87, 261111-261111 (2005).
  40. S. Tay, "High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time," Appl. Phys. Lett. 87, 171105-171105 (2005).
  41. W. S. Kim, J. W. Lee, J. K. Park, "Enhancement of the recording stability of a photorefractive polymer composite by the introduction of a trapping layer," Appl. Phys. Lett. 83, 3045-3047 (2003).
  42. D. Van Steenwinckel, E. Hendrickx, A. Persoons, "Dynamics and steady-state properties of photorefractive poly(N-vinylcarbazole)-based composites sensitized with (2,4,7-trinitro-9-fluorenylidene)malononitrile in a 0–3 wt% range," J. Chem. Phys. 114, 9557-9564 (2001).
  43. M. Eralp, "Variation of Bragg condition in low-glass-transition photorefractive polymers when recorded in reflection geometry," Opt. Exp. 15, 11622-11628 (2007).
  44. F. Gallego-Gomez, M. Salvador, S. Köber, K. Meerholz, "High-performance reflection gratings in photorefractive polymers," Appl. Phys. Lett. 90, 251113-251113 (2007).
  45. O. P. Kwon, G. Montemezzani, P. Günter, S. H. Lee, "High-gain photorefractive reflection gratings in layered photoconductive polymers," Appl. Phys. Lett. 84, 43-45 (2004).
  46. J. G. Winiarz, L. Zhang, M. Lal, C. S. Friend, P. N. Prasad, "Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS—Nanocrystal polymer composite," Chem. Phys. 245, 417-428 (1999).
  47. X. Li, J. W. M. Chon, M. Gu, "Nanoparticle-based photorefractive polymers," Aust. J. Chem. 61, 317-323 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited