OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 6, Iss. 10 — Oct. 1, 2010
  • pp: 548–552

Volumetric Display System Using a Digital Micromirror Device Based on Inclined-Plane Scanning

Daisuke Miyazaki, Takeshi Honda, Keisuke Ohno, and Takaaki Mukai

Journal of Display Technology, Vol. 6, Issue 10, pp. 548-552 (2010)

View Full Text Article

Acrobat PDF (1404 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Experimental results of a volumetric display system based on three-dimensional (3D) scanning using an inclined image are reported. An optical real image of an inclined two-dimensional (2D) display device is moved laterally by an optical mirror scanner. Inclined cross-sectional images of a 3D object are projected in accordance with the position of the image plane. A 3D real image is formed as a stack of 2D cross-sectional images as a result of high-speed scanning. This 3D image can satisfy all the criteria for stereoscopic vision. An experimental system using a galvanometer mirror and a digital micromirror device was constructed, and generated three-dimensional images consisting of 1024 x 768 x 200 voxels. A multilevel image can be formed by a spatial dithering technique, even though the binary display device was used.

© 2010 IEEE

Daisuke Miyazaki, Takeshi Honda, Keisuke Ohno, and Takaaki Mukai, "Volumetric Display System Using a Digital Micromirror Device Based on Inclined-Plane Scanning," J. Display Technol. 6, 548-552 (2010)

Sort:  Year  |  Journal  |  Reset


  1. T. Miyashita, T. Uchida, "Cause of fatigue and its improvement in stereoscopic displays," Proc. SID (1990) pp. 249-254.
  2. Y. Nojiri, H. Yamanoue, A. Hanazato, M. Emoto, F. Okano, "Visual comfort/discomfort and visual fatigue caused by stereoscopic HDTV viewing," Proc. SPIE 5291, 303-313 (2004).
  3. M. Emoto, T. Niida, F. Okano, "Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television," J. Display Technol. 1, 328-340 (2005).
  4. M. J. Parker, P. A. Wallis, "Three-dimensional cathode-ray tube displays," J. IEE 95, 371-390 (1948).
  5. B. G. Blundell, A. J. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley, 2000).
  6. I. N. Kompanetsa, S. A. Gonchukov, "Volumetric displays," Proc. SPIE 5821, 125-136 (2005).
  7. J.-Y. Son, B. Javidi, K.-D. Kwack, "Methods for displaying three-dimensional images," Proc. IEEE 94, 502-523 (2006).
  8. P. Soltan, M. Lasher, W. Dahlke, N. Acantilado, M. McDonald, "Laser-projected 3-D volumetric displays," Proc. SPIE 3057, 496-506 (1997).
  9. C.-C. Tsao, J. Chen, "Volumetric display by moving screen projection with a fast-switching spatial light modulator," Proc. SPIE 3296, 191-197 (1998).
  10. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, W. S. Chun, "100 million-voxel volumetric display," Proc. SPIE 4712, 300-312 (2002).
  11. V. V. Saveljev, P. E. Tverdokhleb, Y. A. Shchepetkin, "Laser system for real-time visualization of three-dimensional objects," Proc. SPIE 3402, 222-224 (1998).
  12. K. Kameyama, K. Ohtomi, Y. Fukui, "Interactive volume scanning 3-D display with an optical relay system and multidimensional input devices," Proc. SPIE 1915, Stereoscopic Displays and Applications IV, 12-20 (1993).
  13. A. Sullivan, "DepthCube solid-state 3-D volumetric display," Proc. SPIE–IS&T Electronic Imaging Stereoscopic Displays and Virtual Reality Systems XI (2004) pp. 279-284.
  14. A. C. Traub, "Stereoscopic display using varifocal mirror oscillations," Appl. Opt. 6, 1085-1087 (1967).
  15. E. G. Rowson, "3-D computer-generated movies using varifocal mirror," Appl. Opt. 7, 1505-1511 (1968).
  16. M. C. King, D. H. Berry, "Varifocal mirror technique for video transmission of 3-D images," Appl. Opt. 9, 2035-2039 (1970).
  17. S. Suyama, M. Date, H. Takada, "Three-dimensional display system with dual-frequency liquid-crystal varifocal lens," Jpn. J. Appl. Phys. 39, 480-484 (2000).
  18. D. Miyazaki, K. Matsushita, "Volume scanning three-dimensional display that uses an inclined image plane," Appl. Opt. 40, 3354-3358 (2001).
  19. D. Miyazaki, K. Shiba, K. Sotsuka, K. Matsushita, "Volumetric display system based on three-dimensional scanning with an inclined optical image," Proc. 11th Int. Display Workshops (2004) pp. 1483-1486.
  20. D. Miyazaki, M. Lasher, Y. Fainman, "Fluorescent volumetric display excited by a single infrared beam," Appl. Opt. 44, 5281-5285 (2005).
  21. D. Miyazaki, K. Shiba, K. Sotsuka, K. Matsushita, "Volumetric display system based on three- dimensional scanning of inclined optical image," Opt. Exp. 14, 12760-12769 (2006).
  22. D. Miyazaki, T. Honda, K. Ohno, T. Mukai, "Volumetric display based on inclined image scanning and its application for three-dimensional image transmission," Proc. 26th ICCE Conf. (2008).
  23. D. Dudley, W. M. Duncan, J. Slaughter, "Emerging digital micro-mirror device (DMD) applications," Proc. SPIE 4985, 14-25 (2003).
  24. C. W. Tyler, R. D. Hamer, "Analysis of visual modulation sensitivity. IV. Validity of the Ferry-Porter law," J. Opt. Soc. Amer. A 7, 743-758 (1990).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited