OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 6, Iss. 2 — Feb. 1, 2010
  • pp: 52–59

Hollow Cathode Effect in Cold Cathode Fluorescent Lamps: A Review

Ian L. Alberts, David S. Barratt, and Asim K. Ray

Journal of Display Technology, Vol. 6, Issue 2, pp. 52-59 (2010)

View Full Text Article

Acrobat PDF (389 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Various efforts within the cold cathode fluorescent lamp (CCFL) industry are underway to decrease costs and increase electrode performance. In order to understand the impact that the choice of gas mixtures and pressures, cathode shape and material might have on the lamp's operation requires a knowledge of the underlying principles governing the glow discharge. We present a review of the literature on the hollow cathode effect and glow discharges, which has particular relevance to the design of CCFL lamp electrodes used in liquid crystal displays. We show that industry-wide standard gas pressures and electrode designs cannot operate in the hollow cathode regime.

© 2010 IEEE

Ian L. Alberts, David S. Barratt, and Asim K. Ray, "Hollow Cathode Effect in Cold Cathode Fluorescent Lamps: A Review," J. Display Technol. 6, 52-59 (2010)

Sort:  Year  |  Journal  |  Reset


  1. Y. P. Raizer, Gas Discharge Physics (Springer, 1997).
  2. J. Peterson, S. Barnez, Design Issues in the Selection of Backlight Inverters (Endicott Research Group Technical Literature (2006)) http://www.ergpower.com/pdf30/confer.pdf.
  3. E. U. Condon, H. Oddishaw, Handbook of Physics (McGraw Hill, 1958).
  4. Handbuch der Physik: Vol. XXI; Elektronenemission und Gasentladungen I (Springer Verlag, 1956).
  5. I. L. Alberts, "Cathode sputtering in glow discharges," J. Phys: Conf. Ser. .
  6. J. R. Acton, J. D. Swift, Cold Cathode Discharge Tubes (Heywood, 1963).
  7. A. von Engel, P. F. Little, "The hollow cathode effect and the theory of glow discharges," Proc. Roy. Soc. (1954) pp. 209.
  8. B. Chapman, Glow Discharge Processes (Wiley, 1980).
  9. S. N. Sen, A. K. Ghosh, "Variation of Townsend's second coefficient in electrodeless discharge," Proc. Phys. Soc. (1962) pp. 180-189.
  10. A. R. Petre, "Characterisation of a DC plasma with hollow cathode effect," Rom. Rep. in Physics 56, 271-276 (2004).
  11. H. Helm, "Experimenteller Nachweis des Pendel-Effektes in einer zylindrischen Niederdruck–Hohlkathoden–Entladung in Argon," Z. Nat. 27 a, 1812-1820 (1972).
  12. V. I. Kolobov, L. D. Tsendin, "Analytic model of the hollow cathode effect," Plasma Sources Sci Technol. 4, 551-560 (1995).
  13. A. von Engel, M. Steenbeck, Elektrische Gasentladungen: Ihre Physik und Technik (J. Springer, 1932).
  14. R. R. Arslanbekov, "On the HCE: Conventional and modified geometry," Plasma Sources Sci Technol. 7, 310-322 (1998).
  15. M. Tatsuya, "Penning like energy transfer between argon and nitrogen," IEEE ISDEIV '06. Int. Symp. Discharges and Electrical Insulation in Vacuum (2006).
  16. CRC Handbook of Chemistry and Physics (CRC Press, 1964).
  17. S. Schöβler, Ionenerzeugung mit Hochdruck-Mikroentladung Diplom thesis Inst. für Kernphysik Johann-Wolfang von Goethe Univ.Frankfurt a.M.Germany (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited