OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 8, Iss. 1 — Jan. 1, 2012
  • pp: 27–34

Electrical Stability of High-Mobility Microcrystalline Silicon Thin-Film Transistors

Anita Risteska, Kah-Yoong Chan, Aad Gordijn, Helmut Stiebig, and Dietmar Knipp

Journal of Display Technology, Vol. 8, Issue 1, pp. 27-34 (2012)

View Full Text Article

Acrobat PDF (769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The electrical stability of high-mobility microcrystalline silicon (μc-Si:H) thin-film transistors (TFTs) was investigated and compared to amorphous silicon (a-Si:H) TFTs. Under prolonged bias stress the microcrystalline silicon TFTs exhibit an improved electrical stability compared to amorphous silicon TFTs. The microcrystalline silicon TFTs were prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. The realized microcrystalline silicon transistors exhibit electron charge carrier mobilities exceeding 30 cm<sup>2</sup> /V · s. Prolonged operation of the transistors leads to a shift of the threshold voltage towards positive and negative gate voltages depending on the gate biasing conditions (positive or negative gate voltage). The shift of the threshold voltage increases with increasing positive and negative gate bias stress. The behavior is fundamentally different from the behavior of the amorphous silicon TFTs, which exhibit only a shift of the threshold voltage towards positive gate voltages irrespective of the polarity of the gate bias stress. The threshold voltage shift of the microcrystalline silicon TFTs saturates after a few minutes to a few hours, depending on the gate voltage. After prolonged bias stress, a recovery of the initial threshold voltage is observed without any thermal annealing or biasing of the transistors, which is not the case for the measured amorphous silicon TFTs.

© 2011 IEEE

Anita Risteska, Kah-Yoong Chan, Aad Gordijn, Helmut Stiebig, and Dietmar Knipp, "Electrical Stability of High-Mobility Microcrystalline Silicon Thin-Film Transistors," J. Display Technol. 8, 27-34 (2012)

Sort:  Year  |  Journal  |  Reset


  1. C. R. Kagan, P. Andry, Thin-Film Transistors New York, BaselUSAMarcel Dekker (Marcel Dekker, 2003).
  2. R. A. Street, Technology and Applications of Amorphous Silicon, Springer Series in Material Science BerlinGermanySpringer-Verlag (Springer-Verlag, 2000)37.
  3. R. B. Wehrspohn, S. C. Deane, M. J. Powell, "Defect creation kinetics in amorphous silicon thin film transistors," J. Non-Cryst. Solids 299–302, 492-496 (2002).
  4. M. J. Powell, C. van Berkel, A. R. Franklin, S. C. Deane, W. I. Milne, "Defect pool in amorphous-silicon thin-film transistors," Phys. Rev. B 45, 4160-70 (1992).
  5. B. Hekmatshoar, S. Wagner, J. C. Sturm, "Tradeoff regimes of lifetime in amorphous silicon thin-film transistors and a universal lifetime comparison framework," Appl. Phys. Lett. 95, 143504 (2009).
  6. S. D. Brotherton, "Polycrystalline silicon thin film transistors," Semicond. Sci. Technol. 10, 721-738 (1995).
  7. S. D. Brotherton, "Poly-crystalline silicon thin film devices for large area electronics," Microelectronic Engineering 15, 333-340 (1991).
  8. M. G. Kane, "Organic and polymeric TFTs for flexible displays and circuits," Electron. Mater.: Sci. and Technol. 11, 215-260 (2009).
  9. A. Benor, A. Hoppe, V. Wagner, D. Knipp, "Electrical stability of pentacene thin film transistors," Organic Electron. 8, 749-758 (2007).
  10. A. Salleo, M. L. Chabinyc, Electrical and Environmental Stability of Polymer Thin-Film Transistors, Organic Electron.:Materials, Manufacturing and Applications (, 2006).
  11. C.-H. Lee, A. Sazonov, A. Nathan, "High-mobility nanocrystalline silicon thin-film transistor fabricated by plasma-enhanced chemical vapor deposition," Appl. Phys. Lett. 86, 222106 (2005).
  12. A. T. Krishnan, S. Bae, S. J. Fonash, "Fabrication of microcrystalline silicon TFTs using a high-density plasma approach," IEEE Electron Device Lett. 22, 399 (2001).
  13. J. I. Woo, H. J. Lim, J. Jang, "Polycrystalline silicon thin film transistors deposited at low substrate temperature by remote plasma chemical vapor deposition using ${\rm SiF}_{4}/{\rm H}_{2}$," Appl. Phys. Lett. 65, 1644-1646 (1994).
  14. I.-C. Cheng, S. Wagner, "Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150$^{\circ}{\rm C}$," Appl. Phys. Lett. 80, 440-442 (2002).
  15. K.-Y. Chan, A. Gordijn, H. Stiebig, D. Knipp, "Microcrystalline silicon transistors and CMOS inverters fabricated near the transition to amorphous growth regime," IEEE Trans. on Electron Devices 56, 1924-1929 (2009).
  16. C.-H. Lee, D. Striakhilev, A. Nathan, "Stability of nc-Si:H TFTs with silicon nitride gate dielectric," IEEE Trans. Electron Devices 54, 45 (2007).
  17. A. Orpella, C. Voz, J. Puigdollers, D. Dosev, M. Fonrodona, D. Soler, J. Bertomeu, J. M. Asensi, J. Andreu, R. Alcubilla, "Stability of hydrogenated nanocrystalline silicon thin-film transistors," Thin Solid Films 395, 335-338 (2001).
  18. C.-H. Lee, D. Striakhilev, S. Tao, A. Nathan, "Top-gate TFTs using 13.56 MHz PECVD microcrystalline silicon," IEEE Electron Device Lett. 26, 637 (2005).
  19. F. Taghibakhsh, M. M. Adachi, K. S. Karim, "Hot-wire deposited nanocrystalline silicon TFTs on plastic substrates," Mater. Res. Soc. Symp. Proc. (2007) pp. 0989-A20-04.
  20. P. R. I. Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drevillon, I. French, "Stable microcrystalline silicon thin-film transistors produced by the layer-by-layer technique," J. Appl. Phys. 86, 7079 (1999).
  21. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner, "Intrinsic microcrystalline silicon: A new material for photovoltaics," Sol. Energ. Mat. Sol. Cells 62, 97-108 (2000).
  22. I.-C. Cheng, S. Allen, S. Wagner, "Evolution of nanocrystalline silicon thin-film transistor channel layers," J. Non-Cryst. Solids 338–340, 720-724 (2004).
  23. L. Guo, M. Kondo, M. Fukawa, K. Saitoh, A. Matsuda, "High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition," Jpn. J. Appl. Phys. 37, L1116-L1118 (1998).
  24. K.-Y. Chan, D. Knipp, A. Gordijn, H. Stiebig, "High-mobility microcrystalline silicon thin-film transistors prepared near the transition to amorphous growth," J. Appl. Phys. 104, 054506 (2008).
  25. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  26. M. J. Powell, C. van Berkel, I. D. French, D. H. Hicholls, "Bias dependence of instability mechanisms in amorphous silicon thin-film transistors," Appl. Phys. Lett. 51, 42-1244 (1987).
  27. K. S. Karim, A. Nathan, M. Hack, W. I. Milne, "Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs," IEEE Electron Device Lett. 25, 188-190 (2004).
  28. M. J. Powell, "The physics of amorphous-silicon thin-film transistors," IEEE Transact. Electron Devices 36, 2753-2763 (1989).
  29. A. Rolland, J. Richard, J. P. Kleider, D. Mencaraglia, "Electrical properties of amorphous silicon transistors and MIS-devices: Comparative study of top nitride and bottom nitride configurations," J. Electrochem. Soc. 140, 3679-83 (1993).
  30. J. P. Kleider, C. Longeaud, D. Mencaraglia, A. Rolland, P. Vitrou, J. Richard, "Density of states in thin-film transistors from the modulated photocurrent technique: Application to the study of metastabilities," J. Non-Cryst. Solids 164–166, 739-42 (1993).
  31. A. V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, "Solar energy materials and solar cells," Sol. Energ. Mat. Sol. Cells 78, 469-491 (2003).
  32. F. Finger, R. Carius, T. Dylla, S. Klein, S. Okur, M. Gunes, "Stability of microcrystalline silicon for thin film solar cell applications," Proc. IEEE 150, 300 (2003).
  33. G. Yilmaz, E. Turan, M. Günes, V. Smirnov, F. Finger, R. Brüggemann, "Instability effects in hydrogenated microcrystalline silicon thin films," Phys. Status Solidi (c) 7, 700 (2010).
  34. S. Zafar, A. Callegari, E. Gusev, M. V. Fischetti, Charge Trapping Related Threshold Voltage Instabilities in High Permittivity Gate Dielectric Stacks (IBM Semiconductor Research and Development Center and T.J. Watson Research Center, 2003).
  35. L. Han, K. Song, P. Mandlik, S. Wagner, "Ultraflexible amorphous silicon transistors made with a resilient insulator," Appl. Phys. Lett. 96, 042111 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited