OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 8, Iss. 11 — Nov. 1, 2012
  • pp: 663–668

Reverse-Mode Polymer-Stabilized Dual-Frequency Cholesteric Texture Cell for Dual Mode Operations

Che-Hsyan Wang, Cheng-Che Wu, Ya-Ting Yang, Tien-Lung Chiu, Jiunn-Yih Lee, and Jiun-Haw Lee

Journal of Display Technology, Vol. 8, Issue 11, pp. 663-668 (2012)


View Full Text Article

Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We demonstrated a polymer-stabilized dual-frequency cholesteric texture (PSDFCT) cell that functions smoothly in both dynamic switch and steady bistable usage, dual mode operation. The PSDFCT cell is a reverse-mode texture device containing a cholesteric liquid crystal (ChLC) and polymeric mixture. As polymer concentration increases, the PSDFCT cell exhibits increasing operational voltage and diminishing contrast ratio, which results from the increasing polymer network anchoring force to firmly stabilize the ChLC texture. Switching from planar texture to focal-conic texture is triggered by applying a threshold alternating current (AC) bias at low frequency (60 Hz). The opposite change, from focal-conic to planar texture, is achieved by varying the AC bias frequency from low (60 Hz) to high (35 kHz). The dual dielectric anisotropies of ChLC allow efficient dynamic switching by varying the bias frequency. Under bistable operation, a larger AC bias voltage generates polymer network distortion, directly affecting the ChLC mixture. The reciprocal switch, between planar texture and focal-conic texture, is performed at the greater AC bias by varying bias frequency.

© 2012 IEEE

Citation
Che-Hsyan Wang, Cheng-Che Wu, Ya-Ting Yang, Tien-Lung Chiu, Jiunn-Yih Lee, and Jiun-Haw Lee, "Reverse-Mode Polymer-Stabilized Dual-Frequency Cholesteric Texture Cell for Dual Mode Operations," J. Display Technol. 8, 663-668 (2012)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-8-11-663


Sort:  Year  |  Journal  |  Reset

References

  1. R. Q. Ma, D. K. Yang, "Optimization of polymer-stabilized bistable black-white cholesteric reflective display," J. SID 7, 61-65 (1999).
  2. H. Ren, S. T. Wu, "Reflective reversed-mode polymer stabilized cholesteric texture light switches," J. Appl. Phys. 92, 797-800 (2002).
  3. Y. H. Wu, X. Liang, Y. Q. Lu, F. Du, Y. H. Lin, S.-T. Wu, "Variable optical attenuator with a polymer-stabilized dual-frequency liquid crystal," Appl. Opt. 44, 4394-4397 (2005).
  4. D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, F. Chidichimo, "Self-adjusting smart windows based on polymer-dispersed liquid crystals," Sol. Energ. Mater. Sol. Cell. 93, 2008-2012 (2009).
  5. D. K. Yang, L. C. Chien, J. W. Doane, "Cholesteric liquid crystal/polymer dispersion for haze-free light shutters," Appl. Phys. Lett. 60, 3102-3104 (1992).
  6. M.-H. Lu, "Bistable reflective cholesteric liquid crystal display," J. Appl. Phys. 81, 1063-1066 (1997).
  7. I. Dierking, L. L. Kosbar, A. A. Ardakani, A. C. Lowe, G. A. Held, "Two-stage switching behavior of polymer stabilized cholesteric textures," J. Appl. Phys. 81, 3007-3014 (1997).
  8. I. Dierking, L. L. Kosbar, A. C. Lowe, G. A. Held, "Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature," Liquid Cryst. 24, 387-395 (1998).
  9. I. Dierking, L. L. Kosbar, A. C. Lowe, G. A. Held, "Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions," Liquid Cryst. 24, 397-406 (1998).
  10. H. Guillard, P. Sixou, L. Reboul, A. Perichaud, "Electrooptical characterizations of polymer stabilized cholesteric liquid crystals," Polymer 42, 9753-9762 (2001).
  11. K. Y. Lo, C. Y. Huang, G. C. Hsu, H. T. Hsu, A. T. G. Fuh, "Studies of the dye-doped polymer-stabilized cholesteric texture films," Jpn. J. Appl. Phys. 42, 3531-3534 (2003).
  12. J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, "Field controlled light scattering for nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
  13. P. S. Drzaic, "Polymer dispersed nematic liquid crystal for large area displays and light valves," J. Appl. Phys. 60, 2142-2148 (1986).
  14. Y. H. Lin, H. Ren, S. T. Wu, "High contrast polymer-dispersed liquid crystal in a 90 $^{\circ}$ twisted cell," Appl. Phys. Lett. 84, 4083-4085 (2004).
  15. I. Dierking, "Polymer network-stabilized liquid crystals," Adv. Mater. 12, 167-181 (2000).
  16. C. Y. Huang, S. W. Ke, Y. S. Chih, "Electro-optical performance of polymer stabilized cholesteric texture cell: The influence of chiral dopant and monomer concentration," Opt. Commun. 266, 198-202 (2006).
  17. C. Y. Huang, Y. S. Chih, S. W. Ke, "Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell," Appl. Phys. B 86, 123-127 (2007).
  18. Y. Yin, W. Li, H. Cao, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, H. Yang, "Effect of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture," J. Appl. Polym. Sci. 111, 1353-1357 (2009).
  19. R. Bao, C. M. Liu, D. K. Yang, "Smart bistable polymer stabilized cholesteric texture light shutter," Appl. Phys. Express 2, 112404:1-112404:3 (2009).
  20. J. Ma, L. Shi, D. K. Yang, "Bistable polymer cholesteric texture light shutter," Appl. Phys. Express 3, 021702:1-021701:3 (2010).
  21. Y. C. Hsiao, C. T. Hou, V. Y. Zyryanov, W. Lee, "Multichannel photonics devices based on tristable polymer-stabilized cholesteric textures," Opt. Express 19, 23952-23957 (2011).
  22. Y. C. Hsiao, C. Y. Tang, W. Lee, "Fast-switching bistable cholesteric intensity modulator," Opt. Express 19, 9744-9749 (2011).
  23. Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, S. T. Wu, "Dual-frequency liquid crystal gels with submillisecond response time," Appl. Phys. Lett. 85, 2451-2453 (2004).
  24. H. H. Liang, C. C. Wu, P. H. Wang, J. Y. Lee, "Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter," Opt. Mater. 33, 1195-1202 (2011).
  25. H. Xianyu, S. T. Wu, C. L. Lin, "Dual frequency liquid crystals: A review," Liquid Cryst. 36, 717-726 (2009).
  26. R. Manohar, A. K. Srivastava, Jyotishman, J. P. Shukla, A. K. Prajapati, N. L. Bonde, "Dielectric, optical and thermodynamical properties of liquid crystal sample exhibiting SmA phase," Int. J. Phys. Sci. 1, 147-153 (2006).
  27. C. H. Wen, S. T. Wu, "Dielectric heating effects of dual-frequency liquid crystals," Appl. Phys. Lett. 86, 231104 (2005).
  28. K. R. Sun, J. Y. Woo, Y. H. Cho, B. K. Kim, "Interface modification of polymer stabilized cholesteric liquid crystal," Polym. Adv. Technol. 20, 501-506 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited