OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 8, Iss. 12 — Dec. 1, 2012
  • pp: 695–698

Role of HfO2/SiO2 Gate Dielectric on the Reduction of Low-Frequent Noise and the Enhancement of a-IGZO TFT Electrical Performance

Liang-Yu Su, Huang-Kai Lin, Chia-Chin Hung, and JianJang Huang

Journal of Display Technology, Vol. 8, Issue 12, pp. 695-698 (2012)


View Full Text Article

Acrobat PDF (754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

High-κ dielectric is regarded as an effective material to reduce the operating voltage of the amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs). However, the dielectric with high permittivity often has the drawbacks of inducing small conduction band offset energy and high interface trap density. Here a bilayer HfO2/SiO2 gate dielectric for thin-film transistors (TFTs) is employed to address the issues. Compare to the a-IGZO TFT with solely 15 nm-thick HfO2 gate dielectric, the TFT with the bilayer HfO2/SiO2 (10 nm/5 nm) gate dielectric improves the subthreshold swing (SS) from 0.22 to 0.12 V/decade, the mobility from 1.4 to 7 cm2/V ⋅ s and current on–off ratio from 9 x 106 to 1.3 x 109. Finally, Hooge's parameters (extracted from the low-frequency noise measurement) of a-IGZO TFTs were investigated to understand the defects near the channel/dielectrics interface so that the role of the thin SiO2 layer can be verified. The device with bilayer HfO2/SiO2 structure exhibits a value of 2 x 10-3, which is an order of magnitude lower than the one with a single HfO2 layer. The Hooge's parameter of our bilayer dielectric is the lowest among the reported metal–oxide based TFTs on the glass substrate.

© 2012 IEEE

Citation
Liang-Yu Su, Huang-Kai Lin, Chia-Chin Hung, and JianJang Huang, "Role of HfO2/SiO2 Gate Dielectric on the Reduction of Low-Frequent Noise and the Enhancement of a-IGZO TFT Electrical Performance," J. Display Technol. 8, 695-698 (2012)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-8-12-695


Sort:  Year  |  Journal  |  Reset

References

  1. E. Fortunato, P. Barquinha, R. Martins, "Oxide semiconductor thin-film transistors: A review of recent advances," Adv. Mater. 24, 2945-2986 (2012).
  2. P. Barquinha, L. Pereira, G. Goncalves, R. Martins, E. Fortunato, "The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs," Electrochem. Solid-State Lett. 11, H248 (2008).
  3. T. Kamiya, K. Nomura, H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors," Sci. Technol. Adv. Mat. 11, (2010).
  4. H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, "Amorphous oxide channel TFTs," Thin Solid Films 516, 1516-1522 (2007).
  5. L. Y. Su, H. Y. Lin, H. K. Lin, S. L. Wang, L. H. Peng, J. J. Huang, "Characterizations of amorphous IGZO thin-film transistors with low subthreshold swing," IEEE Electron Devices Lett. 32, 1-3 (2011).
  6. N. Su, S. J. Wang, A. Chin, "A low operating voltage ZnO thin film transistor using a high-$\kappa$ HfLaO gate dielectric," Electrochem. Solid-State Lett. 13, H8 (2010).
  7. S. Jeon, A. Benayad, S. E. Ahn, S. Park, I. Song, C. Kim, U. I. Chung, "Short channel device performance of amorphous InGaZnO thin film transistor," Appl. Phys. Lett. 99, 082104 (2011).
  8. J. Robertson, "Band structures and band offsets of high ${\rm K}$ dielectrics on Si," Appl. Surf. Sci. 190, 2-10 (2002).
  9. J. C. Park, S. I. Kim, C. J. Kim, S. Kim, D. H. Kim, I. T. Cho, H. I. Kwon, "Impact of high-$k$${\hbox{HfO}} _{2} $ dielectric on the low-frequency noise behaviors in amorphous InGaZnO thin film transistors," Jpn. J. Appl. Phys. 49, 0205 (2010).
  10. P. Barquinha, L. Pereira, G. Gonçalves, D. Kuscer, M. Kosec, A. Vilà, A. Olziersky, J. R. Morante, R. Martins, E. Fortunato, "Low-temperature sputtered mixtures of high-$\kappa$ and high bandgap dielectrics for GIZO TFTs," J. Soc. Inf. Display 18, 762 (2010).
  11. P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, D. Kuš?er, M. Kosec, E. Fortunato, "Performance and stability of low temperature transparent thin-film transistors using amorphous multicomponent dielectrics," J. Electrochem. Soc. 156, H824 (2009).
  12. E. Douglas, A. Scheurmann, R. Davies, B. Gila, H. Cho, V. Craciun, E. Lambers, S. Pearton, F. Ren, "Measurement of ${\hbox{SiO}}_{2}$/${\hbox{InZnGaO}}_{4}$ heterojunction band offsets by x-ray photoelectron spectroscopy," Appl. Phys. Lett. 98, 242110 (2011).
  13. H. Cho, E. Douglas, B. Gila, V. Craciun, E. Lambers, F. Ren, S. Pearton, "Band offsets in ${\hbox{HfO}}_{2}$/${\hbox{InGaZnO}}_{4}$ heterojunctions," Appl. Phys. Lett. 100, 012105-012105-3 (2012).
  14. J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song, C. S. Hwang, "Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors," Electrochem. Solid-State Lett. 11, H157-H159 (2008).
  15. T. E. Chang, C. Huang, T. Wang, "Mechanisms of interface trap-induced drain leakage current in off-state n-MOSFET's," IEEE Trans. Electron Devices 42, 738-743 (1995).
  16. E. Simoen, A. Mercha, L. Pantisano, C. Claeys, E. Young, "Low-frequency noise behavior of ${\hbox{SiO}}_{2}$–${\hbox{HfO}}_{2}$ dual-layer gate dielectric nMOSFETs with different interfacial oxide thickness," IEEE Trans. Electron Devices 51, 780-784 (2004).
  17. M. V. Haartman, M. Ostling, Low-Frequency Noise in Advanced MOS Devices (Springer, 2007).
  18. T. C. Fung, G. Baek, J. Kanicki, "Low frequency noise in long channel amorphous In–Ga–Zn–O thin film transistors," J. Appl. Phys. 108, 074518-074518-10 (2010).
  19. J. M. Lee, W. S. Cheong, C. S. Hwang, I. T. Cho, H. I. Kwon, J. H. Lee, "Low-frequency noise in amorphous indium–gallium–zinc-oxide thin-film transistors," IEEE Electron Device Lett. 30, 505-507 (2009).
  20. I. T. Cho, W. S. Cheong, C. S. Hwang, J. M. Lee, H. I. Kwon, J. H. Lee, "Comparative study of the low-frequency-noise behaviors in a-IGZO thin-film transistors with ${\hbox{Al}}_{2}{\hbox{O}}_{3}$ and ${\hbox{Al}}_{2}{\hbox{O}}_{3}$/${\hbox{SiN}}_{x}$ gate dielectrics," IEEE Electron Device Lett. 30, 828-830 (2009).
  21. S. Kim, Y. Jeon, J. H. Lee, B. D. Ahn, S. Y. Park, J. H. Park, J. H. Kim, J. Park, D. M. Kim, D. H. Kim, "Relation between low-frequency noise and subgap density of states in amorphous InGaZnO thin-film transistors," IEEE Electron Device Lett. 31, 1236-1238 (2010).
  22. S. Ju, P. Chen, C. Zhou, Y. Ha, A. Facchetti, T. J. Marks, S. K. Kim, S. Mohammadi, D. B. Janes, "$1/{f}$ noise of SnO2 nanowire transistors," Appl. Phys. Lett. 92, 243120-243120-3 (2008).
  23. K. S. Jeong, Y. M. Kim, H. J. Yun, S. D. Yang, Y. S. Kim, M. H. Kang, H. D. Lee, G. W. Lee, "Crystal quality effect on low-frequency noise in ZnO TFTs," IEEE Electron Device Lett. 32, 1-3 (2011).
  24. H. D. Xiong, W. Wang, J. S. Suehle, C. A. Richter, W. K. Hong, T. Lee, "Noise in ZnO nanowire field effect transistors," J. Nanosci. Nanotechnol. 9, 1041-1044 (2009).
  25. H. S. Choi, S. Jeon, H. Kim, J. Shin, C. Kim, U. I. Chung, "The impact of active layer thickness on low-frequency noise characteristics in InZnO thin-film transistors with high mobility," Appl. Phys. Lett. 100, 173501-173501-4 (2012).
  26. S. Ju, S. Kim, S. Mohammadi, D. B. Janes, Y. G. Ha, A. Facchetti, T. J. Marks, "Interface studies of ZnO nanowire transistors using low-frequency noise and temperature-dependent IV measurements," Appl. Phys. Lett. 92, 022104 (2008).
  27. S. Kim, P. Srisungsitthisunti, C. Lee, M. Xu, P. D. Ye, M. Qi, X. Xu, C. Zhou, S. Ju, "Selective contact anneal effects on indium oxide nanowire transistors using femtosecond laser," J. Phys. Chem. C (2011).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited