OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 8, Iss. 9 — Sep. 1, 2012
  • pp: 539–545

Free-Motion Beam Propagation Factor Measurement by Means of a Liquid Crystal Spatial Light Modulator

Jorge Pérez-Vizcaíno, Omel Mendoza-Yero, Raúl Martínez-Cuenca, Lluís Martínez-León, Enrique Tajahuerce, and Jesús Lancis

Journal of Display Technology, Vol. 8, Issue 9, pp. 539-545 (2012)

View Full Text Article

Acrobat PDF (913 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In contrast to the mechanical scanning procedure described in the standard ISO/DIS 11146, the use of electronically tunable focal length lenses has proved its capability for the measurement of the laser beam propagation factor (${\rm M} ^{2}$) without moving components. Here, we demonstrate a novel experimental implementation where we use a low-cost programmable liquid crystal spatial light modulator (SLM) for sequentially codifying a set of lenses with different focal lengths. The use of this kind of modulators introduces some benefits such as the possibility for high numerical aperture or local beam control of the phase of the lenses which allows for minimizing systematic errors originated by lens aberrations. The beamwidth, according to the second-order moment of the irradiance, is determined for each focal length by using a digital sensor at a fixed position with respect to the spatial light modulator. After fitting the measured data to the theoretical focusing behavior of a real laser beam, the beam propagation factor is obtained. We successfully validated the results in the laboratory where a full digital control of the measurement procedure without mechanical scanning was demonstrated.

© 2012 IEEE

Jorge Pérez-Vizcaíno, Omel Mendoza-Yero, Raúl Martínez-Cuenca, Lluís Martínez-León, Enrique Tajahuerce, and Jesús Lancis, "Free-Motion Beam Propagation Factor Measurement by Means of a Liquid Crystal Spatial Light Modulator," J. Display Technol. 8, 539-545 (2012)

Sort:  Year  |  Journal  |  Reset


  1. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1989) pp. 79-87.
  2. “Test method for laser beam parameters: beam width, divergence angle and beam propagation factor,” International Organization for Standardization Doc. ISO/DIS 11146 (1996).
  3. B. Schäfer, M. Lübbecke, K. Mann, "Hartmann-Shack wave front measurements for real time determination of laser beam propagation parameters," Rev. Sci. Instrum. 77, 053103 (2006).
  4. J. V. Sheldakova, A. V. Kudryashov, V. Y. Zavalova, T. Y. Cherezova, "Beam quality measurements with Shack–Hartmann wavefront sensor and M2-sensor: Comparison of two methods," Proc. SPIE 4493, 285-293 (2002).
  5. A. M. Cary, J. L. Guttman, R. Chirita, D. W. Peterman, "Beam quality measurements with Shack-Hartmann wavefront sensor and M2-sensor: Comparison of two methods," Proc. SPIE (2008) pp. 687103-1-687103-11.
  6. M. Sheikh, N. A. Riza, "Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens," Appl. Opt. 49, D11-D16 (2010).
  7. M. Sheikh, P. J. Marraccini, N. A. Riza, "Laser beam characterization using agile digital–analog photonics," Proc. SPIE (2010) pp. 767508.
  8. P. J. Marraccini, N. A. Riza, "Multimode laser beam characterization using agile digital-analog photonics," Proc. SPIE (2010) pp. 8026OE.
  9. S. Kuiper, B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128 (2004).
  10. H. Ren, S. T. Wu, "Variable-focus liquid lens," Opt. Express 15, 5931-5936 (2007).
  11. V. Laude, "Twisted-nematic liquid-crystal pixilated active lens," Opt. Commun. 153, 134-152 (1998).
  12. E. Carcolé, J. Campos, S. Bosch, "Diffraction theory of Fresnel lenses encoded in low-resolution devices," App. Opt. 33, 162-174 (1994).
  13. A. Márquez, C. Iemmi, J. Campos, M. J. Yzuel, "Achromatic diffractive lens written onto a liquid crystal display," Opt. Lett. 31, 392-392 (2006).
  14. M. S. Millán, J. Otón, E. Pérez-Cabre, "Dynamic compensation of chromatic aberration in a programmable diffractive lens," Opt. Express 14, 6226-6242 (2006).
  15. J. L. Martinez, I. Moreno, E. Ahouzi, "Diffraction and signal processing with a liquid crystal microdisplay," Eur. J. Phys. 27, 1221-1231 (2006).
  16. C. Maurer, A. Jesacher, S. Bernet, M. Ritsch-Marte, "What spatial light modulators can do for optical microscopy," Laser Photon. Rev. 5, 81-101 (2011).
  17. J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bara, V. Climent, "Measurement and compensation of optical aberrations using a single spatial light modulator," Opt. Express 15, 15287-15292 (2007).
  18. L. Martí-López, O. Mendoza-Yero, J. A. Ramos-de-Campos, "Propagation of polychromatic Gaussian beams through thin lenses," J. Opt. Soc. Amer. A 18, 1348-1356 (2001).
  19. F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, T. Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
  20. L. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, P. Andrés, "Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers," Appl. Phys. Lett. 94, 011104 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited