OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 10 — Oct. 1, 2013
  • pp: 800–806

A Novel Feasible Digital Laser-Blastering to Fabricate a Light-Guide-Plate of High Luminance and Efficiency for TV Application

Tun-Chien Teng

Journal of Display Technology, Vol. 9, Issue 10, pp. 800-806 (2013)

View Full Text Article

Acrobat PDF (819 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, we propose a novel feasible method ‘digital laser-blastering’ (DLB) to fabricate a large-sized LED light guide plate (LGP) of high luminance and efficiency for TV application, which can be hardly achieved by other technologies. Both principle model and experimental measurement are demonstrated, and the comparisons between the experiment group and control group adopting other fabrication technology are also presented. We adopted ${{CO}}_{2}$ laser to engrave the surface of a bare PMMA plate with numbers of micro-concavities. Subsequently, we used Conoscope and BM7 to measure angular luminance and spatial luminance of the backlight unit with the DLB LGP, respectively. In the experimental results, the average spatial luminance of the experiment group with DLB LGPs increases 103–122% at most as compared to the control group, and the feasibility to be applied for the LCD TV of the size over 37 inches is demonstrated. In addition, the DLB LGP adopting an inverted-prism film (IPF) has a very narrow angular distribution in the vertical direction but a much wider in the horizontal, which is suitable especially for TV application.

© 2013 IEEE

Tun-Chien Teng, "A Novel Feasible Digital Laser-Blastering to Fabricate a Light-Guide-Plate of High Luminance and Efficiency for TV Application," J. Display Technol. 9, 800-806 (2013)

Sort:  Year  |  Journal  |  Reset


  1. K. Käläntär, "Functional light-guide plate for backlight unit," SID'99 Tech. Dig. 34.2 (1999) pp. 764-767.
  2. K. Käläntär, "Modified functional light-guide plate for backlighting transmissive LCDs," J. SID 11, 641-645 (2003).
  3. T. Okumura, A. Tagaya, Y. Koike, "Highly-efficient backlight for liquid crystal display having no optical films," Appl. Phys. Lett. 83, 2515-2517 (2003).
  4. D. Feng, G. F. Jin, Y. B. Yan, S. S. Fan, "High quality light guide plates that can control the illumination angle based on microprism structures," Appl. Phys. Lett. 85, 6016-6019 (2004).
  5. S. Aoyama, A. Funamoto, K. Imanaka, "Hybrid normal-reverse prism coupler for light-emitting diode backlight systems," Appl. Opt. 45, 7273-7278 (2006).
  6. K. Imai, I. Fujieda, "Illumination uniformity of an edge-lit backlight with emission angle control," Opt. Express 16, 11969-11974 (2008).
  7. T. Hayakawa, Optical element with light extracting dots and display device using same U.S. Patent 7 108 415 (2006).
  8. C. H. Tien, C. H. Hung, T. H. Yu, "Microlens arrays by direct-writing inkjet print for LCD BLU applications," J. Display Technol. 5, 147-151 (2009).
  9. C. H. Wu, C. H. Lu, "Fabrication of an LCD light guide plate using closed-die hot embossing," J. Micromech. Microeng. 18, 035006 (2008).
  10. H. S. Jang, M. W. Cho, D. S. Park, "Micro dot patterning on the light guide panel using powder blasting," Sensors 8, 877-885 (2008).
  11. J. S. Kim, Y. B. Ko, C. J. Hwang, J. D. Kim, K. H. Yoon, "Fabrication of micro injection mold with modified LIGA micro-lens pattern and its application to LCD-BLU," Korea–Australia Rheol. J. 19, 165-169 (2007).
  12. G.-D. Kim, H. J. Kang, S.-H. Ahan, C. K. Song, C. I. Back, C. S. Lee, "Laser marking process for liquid crystal display LGP," Proc. IMech. Eng. Part B: J. Eng. Manuf. 219, 565-569 (2005).
  13. J. Uh, J. S. Lee, Y. H. Kim, J. T. Choi, M. G. Joo, C. S. Lim, "Laser engraving of micro-patterns on roll surfaces," ISIJ Int. 42, 1266-1272 (2002).
  14. Y. J. Shin, Y. S. Kim, S. H. Park, J. W. Lee, W. G. Jung, Z. P. Chen, "Analysis of laser engraving image inside crystal and PMMA," Proc. SPIE 5713, 539-544 (2005).
  15. J. Lawrence, L. Li, "Modification of the wettability characteristics of PMMA by means of ${{CO}}_{2}$ , Nd:YAG, excimer and high power diode laser radiation," Mater. Sci. Eng. A 303, 142-149 (2001).
  16. S. Park, Y. Shin, E. Choi, H. Ma, S. Lee, "Improvement of luminance and uniformity of light guide panel using scatterer pattern by laser processing," Opt. Laser Technol. 44, 1301-1306 (2012).
  17. J. H. Lee, H. S. Lee, B. K. Lee, W. S. Choi, H. Y. Choi, J. B. Yoon, "Simple liquid crystal display backlight unit comprising only a single-sheet micropatterned polydimethylsiloxane (PDMS) light-guide plate," Opt. Lett. 32, 2665-2667 (2007).
  18. K. Käläntär, "A directional backlight with narrow angular luminance distribution," J. SID 11, 890-893 (2011).
  19. J. W. Pan, C. W. Fan, "2011 High luminance hybrid light guide plate for backlight module application," Opt. Express 19, 20079-20087 (2011).
  20. D. Grabovičkić, P. Benítez, J. C. Miñano, J. Chaves, "LED backlight designs with the flow-line method," Opt. Express 20, A62-A68 (2012).
  21. M. Oe, I. Chiba, Plane light source unit U.S. Patent 5 126 882 (1992).
  22. Y. K. Ee, P. Kumnorkaew, R. Arif, H. Tong, J. Gilchrist, N. Tansu, "Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures," Opt. Express 17, 13747-13757 (2009).
  23. P. F. Zhu, G. Liu, J. Zhang, N. Tansu, "FDTD analysis on extraction efficiency of GaN light-emitting diodes with microsphere arrays," J. Display Technol. 9, 317-323 (2013).
  24. Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode," IEEE J. Sel. Topics Quantum Electron. 15, 1066-1072 (2009).
  25. X. H. Li, P. Zhu, G. Liu, J. Zhang, R. Song, Y. K. Ee, P. Kumnorkaew, J. Gilchrist, N. Tansu, "Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed ${{TiO}}_{2}$ microsphere arrays," J. Display Technol. 9, 324-332 (2013).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited