OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 10 — Oct. 1, 2013
  • pp: 814–818

Liquid Crystal Microlens Array Using Double Lenticular Electrodes

Dong Liang and Qiong-Hua Wang

Journal of Display Technology, Vol. 9, Issue 10, pp. 814-818 (2013)

View Full Text Article

Acrobat PDF (1557 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A liquid crystal (LC) microlens array using double lenticular electrodes is proposed. Two identical substrates with a lenticular electrode on each surface are prepared. The two lenticular electrodes are placed in parallel position with a gap. When a voltage is applied across the electrodes, a periodically inhomogeneous electric field can be generated. Such an electric field can cause a homogeneous LC with a gradient refractive index distribution. Our experiment results show that the lens cell can present good focusing property. The shortest focal length ( ${\sim} {{1.1}}$ mm) of the lens cell can be obtained at a low operating voltage (18 ${V}_{\rm rms}$ ).

© 2013 IEEE

Dong Liang and Qiong-Hua Wang, "Liquid Crystal Microlens Array Using Double Lenticular Electrodes," J. Display Technol. 9, 814-818 (2013)

Sort:  Year  |  Journal  |  Reset


  1. S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
  2. M. Ye, B. Wang, M. Kawamura, S. Sato, "Image formation using liquid crystal lens," Jpn. J. Appl. Phys. 46, 6776-6777 (2007).
  3. M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, T. Tschudi, "Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup," Opt. Commun. 188, 291-299 (2001).
  4. M. Ferstl, A. Frisch, "Static and dynamic Fresnel zone lenses for optical interconnections," J. Mod. Opt. 43, 1451-1462 (1996).
  5. P. C. Chen, C. W. Chen, Y. P. Huang, "Dual directional over driving method for fast response LC-lenses on autostereoscopic 3D display," SID Symp. Dig. Tech. Papers (2011) pp. 17-20.
  6. Y. Choi, J. H. Park, J. H. Kim, S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Opt. Mater. 21, 643-646 (2002).
  7. Y. H. Fan, H. Ren, S. T. Wu, "Switchable Fresnel lens using polymer-stabilized liquid crystal," Opt. Express 11, 3080-3086 (2003).
  8. B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232-L1233 (2002).
  9. H. Ren, Y. H. Fan, S. Gauza, S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
  10. H. Ren, S. T. Wu, "Adaptive liquid crystal lens with large focal length tunability," Opt. Express 14, 11292-11298 (2006).
  11. H. Ren, D. W. Fox, B. Wu, S. T. Wu, "Liquid crystal lens with large focal length tunability and low operating voltage," Opt. Express 15, 11328-11335 (2007).
  12. M. Ye, S. Sato, "Optical properties of liquid crystal lens of any size," Jpn. J. Appl. Phys. 41, L571-L573 (2002).
  13. Z. He, T. Nose, S. Sato, "Optical performance of liquid crystal cells with asymmetric slit-patterned electrodes in various applied field configurations," Jpn. J. Appl. Phys. 33, 1091-1095 (1994).
  14. L. G. Commander, S. E. Day, D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177, 157-170 (2000).
  15. H. T. Dai, Y. J. Liu, X. W. Sun, D. Luo, "A negative-positive tunable liquid-crystal microlens array by printing," Opt. Express 17, 4317-4323 (2009).
  16. S. Masuda, S. Fujioka, M. Honma, T. Nose, S. Sato, "Dependence of optical properties on the device and material parameters in liquid crystal microlenses," Jpn. J. Appl. Phys. 35, 4668-4672 (1996).
  17. M. Xu, H. Ren, C. Nah, S. H. Lee, Y. Liu, "Liquid crystal micro-lenticular array assembled by a fringing field," J. Appl. Phys. 111, 063104-1-063104-5 (2012).
  18. S. Y. Huang, T. C. Tung, H. C. J, J. H. Liu, A. Y. G. Fuh, "All-optical controlling of the focal intensity of a liquid crystal polymer microlens array," Appl. Opt. 50, 5883-5888 (2011).
  19. Y. H. Fan, H. Ren, X. Liang, H. Wang, S. T. Wu, "Liquid crystal microlens arrays with switchable positive and negtive focal length," J. Display Technol. 1, 151-156 (2005).
  20. Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, S. T. Wu, "Adaptive focus integral image system design based on fast-response liquid crystal microlens," J. Display Technol. 7, 674-678 (2011).
  21. G. J. Woodgate, J. Harrold, "High efficiency reconfigurable 2D/3D autostereoscopic display," SID Symp. Dig. Tech. Papers (2003) pp. 394-397.
  22. O. H. Willemsen, S. T. De Zwart, M. G. H. Hiddink, O. Willemsen, "2-D/3-D switchable displays," J. Soc. Inf. Display 14, 715-722 (2006).
  23. Y. P. Huang, C. W. Chen, Y. C. Huang, "Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display," J. Display Technol. 8, 650-655 (2012).
  24. B. Lee, J. H. Park, "Overview of 3D/2D switchable liquid crystal display technologies," Proc. SPIE (2010) pp. 761806-1-761806-10.
  25. S. C. Liu, J. F. Tu, C. C. Gong, C. W. Chang, "Autostereoscopic 2-D/3-D display using a liquid crystal lens," SID Symp. Dig. Tech. Papers (2010) pp. 432-435.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited