OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 4 — Apr. 1, 2013
  • pp: 234–238

Effects of H2 in GaN Barrier Spacer Layer of InGaN/GaN Multiple Quantum-Well Light-Emitting Diodes

Wei-Chih Lai and Ya-Yu Yang

Journal of Display Technology, Vol. 9, Issue 4, pp. 234-238 (2013)

View Full Text Article

Acrobat PDF (750 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We demonstrate the optoelectrical characteristics of thick well short-period InGaN/GaN multiple-quantum-well (MQW) light-emitting diodes (LEDs) with H<sub>2</sub> in GaN barrier spacer layer. Introducing ramped H<sub>2</sub> in the GaN barrier spacer layer creates a wide range of severe well thickness variation randomly distributed in the thick InGaN well. The thickness-fluctuated InGaN well would effectively increase the carrier concentration in the region of the thick InGaN well region during the current injection. Moreover, the ramped H<sub>2</sub> in GaN barrier spacer layer would improve the interface and crystal quality of thick well short-period InGaN/GaN MQWs LEDs. Therefore, compared with traditional long-period InGaN/GaN MQW LEDs, thick well short-period InGaN/GaN MQW LEDs with fluctuated InGaN well thickness enhance output power (25.6% at 20 mA) and improve efficiency droop from 55.0% to 36.7%.

© 2012 IEEE

Wei-Chih Lai and Ya-Yu Yang, "Effects of H2 in GaN Barrier Spacer Layer of InGaN/GaN Multiple Quantum-Well Light-Emitting Diodes," J. Display Technol. 9, 234-238 (2013)

Sort:  Year  |  Journal  |  Reset


  1. S. Nakamura, T. Mukai, M. Senoh, "Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes," Appl. Phys. Lett. 64, 1687-1689 (1994).
  2. S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes," IEEE J. Sel. Topics Quantum Electron. 8, 278-283 (2002).
  3. S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. R. Chen, J. M. Tsai, "400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes," IEEE J. Sel. Topics Quantum Electron. 8, 744-748 (2002).
  4. Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, T. Mukai, "Ultra-high efficiency white light emitting diodes," Jpn. J. Appl. Phys. 45, L1084-L1086 (2006).
  5. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Jpn. J. Appl. Phys. 34, L797-L799 (1995).
  6. T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, M. Kameshima, "Recent progress of nitride-based light-emitting devices," Status Solid. A 200, 52-57 (2003).
  7. J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, Y. Park, "GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer," Appl. Phys. Lett. 88, 013501-013501-3 (2006).
  8. Y. L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, W. F. Schaff, "Low-resistance ohmic contacts to p-type GaN," Appl. Phys. Lett. 76, 2728-2730 (2000).
  9. N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, M. R. Kranes, "Blue-emitting InGaN-GaN double- heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2," Appl. Phys. Lett. 91, 243506-243506-3 (2007).
  10. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices.," Semicond. Sci. Technol. 27, 024001-024001-14 (2012).
  11. J. Zhang, H. Zhao, N. Tansu, "Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers," Appl. Phys. Lett. 97, 111105-111105-3 (2010).
  12. J. Zhang, N. Tansu, "Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes," J. Appl. Phys. 110, 113110-113110-5 (2011).
  13. H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, N. Tansu, "Design and characteristics of staggered InGaN quantum well light-emitting diodes in the green spectral regimes," IET Optoelectron. 3, 283-295 (2009).
  14. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, N. Tansu, "Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography," Nanoscale Res. Lett. 6, 1556-1556-6 (2011).
  15. H. Zhao, J. Zhang, G. Liu, N. Tansu, "Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes," Appl. Phys. Lett. 98, 151115-151115-3 (2011).
  16. C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, C. P. Liu, "Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver arra," Advanced Functional Materials 21, 4719-4723 (2011).
  17. H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. W. Sun, F. A. Ponce, "Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes," Appl. Phys. Lett. 96, 101102-101102-3 (2010).
  18. H. Zhao, G. Liu, R. A. Arif, N. Tansu, "Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes," Solid-State Electron. 54, 1119-1124 (2010).
  19. Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nano-patterned AGOG sapphire substrate by abbreviated growth mode," IEEE J. Sel. Topics Quantum Electron. 15, 1066-1072 (2009).
  20. Y. K. Eea, X. H. Li, J. Biserb, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," J. Cryst. Growth 312, 1311-1315 (2010).
  21. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, C. Wetzel, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Appl. Phys. Lett. 98, 151102-151102-3 (2011).
  22. E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, E. L. Hu, "Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes," Appl. Phys. Lett. 98, 081104-081104-3 (2011).
  23. J. J. Wierer, J. , A. David, M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nature Photonics 3, 163-169 (2009).
  24. X. H. Li, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, "Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios," IEEE Photon. J. 3, 489-499 (2011).
  25. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, "Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures," Optics Express 17, 13747-13757 (2009).
  26. S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, J. K. Sheu, "Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact," IEEE Photon. Technol. Lett. 16, 1002-1004 (2004).
  27. M. I. Richard, M. J. Highland, T. T. Fister, A. Munkholm, J. Mei, S. K. Streiffer, C. Thompson, P. H. Fuoss, G. B. Stephenson, "In situ synchrotron x-ray studies of strain and composition evolution during metal-organic chemical vapor deposition of InGaN," Appl. Phys. Lett. 96, 051911-051911-3 (2010).
  28. B. J. Spencer, P. W. Voorhees, J. Tersoff, "Morphological instability theory for strained alloy film growth: The effect of compositional stresses and species-dependent surface mobilities on ripple formation during epitaxial film deposition," Phys. Rev. B 64, 235-318 (2001).
  29. X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, S. J. Rosner, "Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells," Appl. Phys. Lett. 72, 692-694 (1998).
  30. H. K. Cho, J. Y. Lee, G. M. Yang, C. S. Kim, "Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density," Appl. Phys. Lett. 79, 215-217 (2001).
  31. N. Sharma, P. Thomas, D. Tricker, C. Humphreys, "Chemical mapping and formation of V-defects in InGaN multiple quantum wells," Appl. Phys. Lett. 77, 1274-1276 (2000).
  32. E. L. Piner, M. K. Behbehani, N. A. El-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros, S. M. Bedair, "Effect of hydrogen on the indium incorporation in InGaN epitaxial films," Appl. Phys. Lett. 70, 461-463 (1997).
  33. S. M. Ting, J. C. Ramer, D. I. Florescu, V. N. Merai, B. E. Albert, A. Parekh, D. S. Lee, D. Lu, D. V. Christini, L. Liu, E. A. Armour, "Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition," J. Appl. Phys. 94, 1461-1467 (2003).
  34. J. W. Ju, H. S. Kim, L. W. Jang, J. H. Baek, D. C. Shin, I. H. Lee, "A well protection layer as a novel pathway to increase indium composition: A route towards green emission from a blue InGaN/GaN multiple quantum well," Nanotechnol. 18, 295-402 (2007).
  35. P. M. F. J. Costa1, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham2, P. Dawson, M. J. Godfrey, E. J. Thrush, J. T. Mullins, "Misfit dislocations in In-rich InGaN/GaN quantum well structures," Phys. Status Solid. A 203, 1729-1732 (2006).
  36. Y. L. Hu, R. M. Farrell, C. J. Neufeld, M. Iza, S. C. Cruz, N. Pfaff, D. Simeonov, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, J. S. Speck, "Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells," Appl. Phys. Lett. 100, 161101-161101-4 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited