OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 4 — Apr. 1, 2013
  • pp: 244–248

Effect of Polarization-Matched n-Type AlGaInN Electron-Blocking Layer on the Optoelectronic Properties of Blue InGaN Light-Emitting Diodes

Yun Li, You Gao, Miao He, Jun Zhou, Yan Lei, Li Zhang, Kebao Zhu, and Yulong Chen

Journal of Display Technology, Vol. 9, Issue 4, pp. 244-248 (2013)

View Full Text Article

Acrobat PDF (834 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A design approach is proposed to improve the performances of blue InGaN light-emitting diodes (LEDs) at high current by using of the polarization-matched n-type AlGaInN electron-blocking layer (EBL) instead of conventional EBLs, owing to the more uniform carrier distribution across the multiply quantum well (MQW) active regions. And the response parameters of the blue InGaN LEDs, such as the radiative recombination rate, the internal quantum efficiency and output power, are calculated by the advanced physical model of semiconductor devices (APSYS) software. The simulation results reveal that the total power and the radiative recombination rates of the blue InGaN LEDs with the n-type AlGaInN EBL have been greatly promoted, and their efficiency droop has also been evidently moderated, compared with that of the LEDs with three types of EBL which are p-type AlGaN EBL, p-type AlGaInN EBL and n-type AlGaN EBL.

© 2013 IEEE

Yun Li, You Gao, Miao He, Jun Zhou, Yan Lei, Li Zhang, Kebao Zhu, and Yulong Chen, "Effect of Polarization-Matched n-Type AlGaInN Electron-Blocking Layer on the Optoelectronic Properties of Blue InGaN Light-Emitting Diodes," J. Display Technol. 9, 244-248 (2013)

Sort:  Year  |  Journal  |  Reset


  1. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semicond. Sci. Technol. 27, 024001 (2012).
  2. H. Zhao, G. Liu, J. P. Zhang, D. Jonathan, Dierolf, Volkmar, NelsonTansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express 19, A991-A1007 (2011).
  3. H. Zhao, J. Zhang, G. Liu, N. Tansu, "Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes," Appl. Phys. Lett. 98, 151115 (2011).
  4. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, N. Tansu, "Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography," Nanoscale Res. Lett. 6, 342 (2011).
  5. Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode," IEEE J. Sel. Topics Quantum Electron. 15, 1066-1072 (2009).
  6. Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," J. Cryst. Growth 312, 1311-1315 (2010).
  7. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, C. Wetzel, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Appl. Phys. Lett. 98, 151102 (2011).
  8. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, "Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios," IEEE Photon. J. 3, 489 (2011).
  9. E. Rangel, E. Matioli, Y.-S. Choi, C. Weisbuch, J. S. Speck, E. L. Hu, "Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes," Appl. Phys. Lett. 98, 081104 (2011).
  10. Y.-K. Ee, K. Pisist, R. A. Arif, T. Hua, J. F. Gilchrist, N. Tansu, "Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures," Opt. Express 17, 13747 (2009).
  11. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, M. G. Craford, "Status and future of high-power light-emitting diodes for solid-state lighting," J. Display Technol. 3, 160-175 (2007).
  12. V. Rozhansky, D. A. Zakheim, "Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping," Phys. Status Solid. A 204, 227-230 (2007).
  13. H. Morkoç, Handbook of Nitride Semiconductors and Devices (Wiley-VCH, 2008).
  14. J. S. Cabalu, C. Thomidis, T. D. Moustakas, S. Riyopoulos, L. Zhou, D. J. Smith, "Enhanced internal quantum efficiency and light extraction efficiency from textured GaN/AlGaN quantum wells grown by molecular beam epitaxy," J. Appl. Phys. 99, 064904-1-064904-3 (2006).
  15. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 91, 183507-1-183507-3 (2007).
  16. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, Y. Park, "Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop," Appl. Phys. Lett. 93, 041102-1-041102-3 (2008).
  17. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Y. T. Rebane, D. V. Tarkhin, Y. G. Shreter, "Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs," Semiconductors 40, 605-610 (2006).
  18. N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, M. R. Krames, "Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2," Appl. Phys. Lett. 91, 243506-1-243506-3 (2007).
  19. B. Monemar, E. B. Sernelius, "Defect related issues in the “current roll-off” in InGaN based light emitting diodes," Appl. Phys. Lett. 91, 181103-1-181103-3 (2007).
  20. H. Zhao, G. Liu, R. A. Arif, N. Tansu, "Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes," Solid-State Electron. 54, 1119 (2010).
  21. S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis1, A. M. Fischer, F. A. Ponce, "Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer," Appl. Phys. Lett. 96, 221105 (2010).
  22. I. E. Titkov, D. A. Sannikov, Y.-M. Park, J.-K. Son, "Blue light emitting diode internal and injection efficiency," AIP Adv. 2, 032117 (2012).
  23. N. Tansu, L. J. Mawst, "Current injection efficiency of InGaAsN quantum-well lasers," J. Appl. Phys. 97, 054502 (2005).
  24. N. Tansu, L. J. Mawst, "The role of hole leakage in 1300-nm InGaAsN quantum-well lasers," Appl. Phys. Lett. 82, 1500-1502 (2003).
  25. G. Liu, J. Zhang, X.-H. Li, G. S. Huang, T. Paskova, K. R. Evans, H. Zhao, N. Tansu, "Metalor ganic vapor phase epitaxy and characterizations of nearly-lattice-matched AlInN alloys on GaN/sapphire templates and free-standing GaN substrates," J. Cryst. Growth 340, 66-73 (2012).
  26. X. Li, X. Ni, J. Lee, M. Wu, Ü. Özgür, H. Morkoç, T. Paskova, G. Mulholland, K. R. Evans, "Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes," Appl. Phys. Lett. 95, 121107-1-121107-31 (2009).
  27. S.-H. Yen, M.-C. Tsai, M.-L. Tsai, Y.-J. Shen, T.-C. Hsu, Y.-K. Kuo, "Effect of n-type AlGaN layer on carrie transportation and efficiency droop of blue InGaN light-emitting diodes," Proc. IEEE Photon. Technol. Lett. (2009) pp. 975-977.
  28. I. Vurgaftman, J. R. Meyer, L. R. RamMohan, "Band parameters for III–V compound semiconductors and their alloys," J. Appl. Phys. 89, 5815-5875 (2001).
  29. V. Fiorentini, F. Bernardini, O. Ambacher, "Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures," Appl. Phys. Lett. 80, 1204-1206 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited