OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 4 — Apr. 1, 2013
  • pp: 255–259

Performance Improvement of Nitride-Based Light-Emitting Diode With a Thin Mg-Delta-Doped Hole Injection Layer

Yulun Xian, Shanjin Huang, Zhiyuan Zheng, Bingfeng Fan, Zimin Chen, Zhisheng Wu, Gang Wang, Baijun Zhang, and Hao Jiang

Journal of Display Technology, Vol. 9, Issue 4, pp. 255-259 (2013)

View Full Text Article

Acrobat PDF (546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The performance of InGaN/GaN multiple quantum wells (MQWs) blue light-emitting diodes (LEDs) was improved by inserting a thin Mg-delta-doped hole injection layer at the end of the MQWs. The forward- and reverse-leakage currents were significantly reduced compared with those of the LEDs without the inserting layer. The light output power was enhanced by 13% at a 350 mA injection current. The improved performance could be ascribed to the dislocation suppression and hole concentration enhancement in the p-type GaN by inserting the Mg-delta-doped structure.

© 2013 IEEE

Yulun Xian, Shanjin Huang, Zhiyuan Zheng, Bingfeng Fan, Zimin Chen, Zhisheng Wu, Gang Wang, Baijun Zhang, and Hao Jiang, "Performance Improvement of Nitride-Based Light-Emitting Diode With a Thin Mg-Delta-Doped Hole Injection Layer," J. Display Technol. 9, 255-259 (2013)

Sort:  Year  |  Journal  |  Reset


  1. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semicond. Sci. Technol. 27, 024001 (2012).
  2. D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, J. S. Speck, "Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy," J. Vac. Sci. Technol. A30, 041513 (2012).
  3. R. A. Arif, Y. Ee, N. Tansu, "Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes," Appl. Phys. Lett. 91, 091110 (2007).
  4. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Expr. 19, A991-A1007 (2011).
  5. H. Zhao, R. A. Arif, N. Tansu, "Design analysis of staggered InGaN quantum wells light-emitting diodes at 500–540 nm," IEEE J. Select. Topics Quantum Electron. 15, 1104-1114 (2009).
  6. H. P. Zhao, G. Y. Liu, X.-H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, N. Tansu, "Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime," IET Optoelectron. 3, 283-295 (2009).
  7. C. Liao, M. Tsai, B. Liou, S. Yen, Y. Kuo, "Improvement in output power of a 460 nm InGaN light-emitting diode using staggered quantum well," J. Appl. Phys. 108, 063107 (2010).
  8. S.-H. Park, D. Ahn, B.-H. Koo, J.-W. Kim, "Dip-shaped InGaN/GaN quantum-well light-emitting diodes with high efficiency," Appl. Phys. Lett. 95, 063507 (2009).
  9. R. A. Arif, H. Zhao, N. Tansu, "Type-II InGaN-GaNAs quantum wells for lasers applications," Appl. Phys. Lett. 92, 011104 (2008).
  10. H. Zhao, R. A. Arif, N. Tansu, "Self-consistent gain analysis of type-II ‘W’ InGaN–GaNAs quantum well lasers," J. Appl. Phys. 104, 043104 (2008).
  11. S.-H. Park, D. Ahn, B.-H. Koo, J.-E. Oh, "Optical gain improvement in type-II InGaN/GaNSb/GaN quantum well structures composed of InGaN/and GaNSb layers," Appl. Phys. Lett. 96, 051106 (2010).
  12. J. Park, Y. Kawakami, "Photoluminescence property of InGaN single quantum well with embedded AlGaN δ-layer," Appl. Phys. Lett. 88, 202107 (2006).
  13. S.-H. Park, J. Park, E. Yoon, "Optical gain in InGaN/GaN quantum well structures with embedded AlGaN δ-layer," Appl. Phys. Lett. 90, 023508 (2007).
  14. H. Zhao, G. Liu, N. Tansu, "Analysis of InGaN-delta-InN quantum wells for light-emitting diodes," Appl. Phys. Lett. 97, 131114 (2010).
  15. H. Zhao, R. A. Arif, Y.-K. Ee, N. Tansu, "Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for lasers and light-emitting diodes," IEEE J. Quantum Electron. 45, 66-78 (2009).
  16. C. Tsai, G. Fan, Y. Lee, "Effects of strain-compensated AlGaN/InGaN superlattice barriers on the optical properties of InGaN light-emitting diodes," Appl. Phys. A 104, 319-323 (2011).
  17. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, Y. Park, "Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop," Appl. Phys. Lett. 93, 041102 (2008).
  18. H. Zhao, G. Liu, R. A. Arif, N. Tansu, "Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes," Solid-State Electron. 54, 1119-1124 (2010).
  19. S. Huang, Y. Xian, B. Fan, Z. Zheng, Z. Chen, W. Jia, H. Jiang, G. Wang, "Contrary luminescence behaviors of InGaN/GaN light emitting diodes caused by carrier tunneling leakage," J. Appl. Phys. 110, 064511 (2011).
  20. S. Huang, Z. Chen, Y. Xian, B. Fan, Z. Zheng, Z. Wu, H. Jiang, G. Wang, "Emission enhancement in GaN-based light emitting diodes with shallow triangular quantum wells," Appl. Phys. Lett. 101, 041116 (2012).
  21. N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, M. R. Krames, "Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A/cm2," Appl. Phys. Lett. 91, 243506 (2007).
  22. K. T. Delaney, P. Rinke, C. G. Van de Walle, "Auger recombination rates in nitrides from first principles," Appl. Phys. Lett. 94, 191109 (2009).
  23. E. Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle, "Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes," Appl. Phys. Lett. 98, 161107 (2011).
  24. S. Han, C. Cho, S. Lee, T. Park, T. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, S. Park, "Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes," Appl. Phys. Lett. 96, 051113 (2010).
  25. H. Obloh, K. H. Bachem, U. Kaufmann, M. Kunzer, M. Maier, A. Ramakrishnan, P. Schlotter, "Self-compensation in Mg doped p-type GaN grown by MOCVD," J. Cryst. Growth 195, 270-273 (1998).
  26. P. Kozodoy, S. Keller, S. P. DenBaars, U. K. Mishra, "MOVPE growth and characterization of Mg-doped GaN," J. Cryst. Growth 195, 265-269 (1998).
  27. B. Schineller, A. Guttzeit, P. H. Lim, M. Schwambera, K. Heime, O. Schön, M. euken, "The influence of Mg-concentration and carrier gas on the electrical and optical properties of GaN : Mg grown by MOVPE," J. Cryst. Growth 195, 274-279 (1998).
  28. T. Stephan, K. Köhler, M. Maier, M. Kunzer, P. Schlotter, J. Wagner, "Influence of Mg doping profile on the electroluminescence properties of GaInN multiple-quantum-well light-emitting diodes," Proc. SPIE (2004) pp. 118-345.
  29. W. Lee, J. Limb, J. H. Ryou, D. Yoo, T. Chung, R. D. Dupuis, "Effect of thermal annealing induced by p-type layer growth on blue and green LED performance," J. Cryst. Growth 287, 577-581 (2006).
  30. Y. K. Su, S. J. Chang, S. C. Wei, S.-M. Chen, W.-L. Li, "ESD engineering of nitride-based LEDs," IEEE Trans. Device Mater. Rel. 5, 277-281 (2005).
  31. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, H. X. Jiang, "Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping," Appl. Phys. Lett. 82, 3041-3043 (2003).
  32. C. Bayram, J. L. Pau, R. McClintock, M. Razeghi, "Delta-doping optimization for high quality p-type GaN," J. Appl. Phys. 104, 083512 (2008).
  33. Y. B. Pan, Z. J. Yang, Z. T. Chen, Y. Lu, T. J. Yu, X. D. Hu, K. Xu, G. Y. Zhang, "Reduction of threading edge dislocation density in n-type GaN by Si delta-doping," J. Cryst. Growth 286, 255-258 (2006).
  34. O. Contreras, F. A. Ponce, J. Christen, A. Dadgar, A. Krost, "Dislocation annihilation by silicon delta-doping in GaN epitaxy on Si," Appl. Phys. Lett. 81, 4712-4714 (2002).
  35. Y. H. Xing, J. Han, J. P. Liu, N. H. Niu, J. Deng, Litong, G. D. Shen, "Interrupted Mg doping of GaN with MOCVD for improved p-type layers," Vacuum 82, 1-4 (2007).
  36. K. H. Kim, J. Li, S. X. Jin, J. Y. Lin, H. X. Jiang, "III-nitride ultraviolet light-emitting diodes with delta doping," Appl. Phys. Lett. 83, 566-568 (2003).
  37. C. Bayram, J. L. Pau, R. McClintock, M. Razeghi, "Performance enhancement of GaN ultraviolet avalanche photodiodes with p-type δ-doping," Appl. Phys. Lett. 92, 241103 (2008).
  38. S. Kim, S. Jang, J. Jang, "High-performance and current crowding-free InGaN-GaN-based LEDs integrated by an electrically-reverse-connected Schottky diode and a Mg-delta doped p-GaN," Front. Optoelectron. 5, 127-132 (2012).
  39. U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, B. Santic, "Origin of defect-related photoluminescence bands in doped and nominally undoped GaN," Phys. Rev. B 59, 5561-5567 (1999).
  40. M. Lachab, D. -H. Youn, R. S. Qhalid Fareed, T. Wang, S. Sakai, "Characterization of Mg-doped GaN grown by metalorganic chemical vapor deposition," Solid-State Electron. 44, 1669-1677 (2000).
  41. T. Li, C. Simbrunner, M. Wegscheider, A. Navarro-Quezada, M. Quast, K. Schmidegg, A. Bonanni, "GaN: δ-Mg grown by MOVPE: Structural properties and their effect on the electronic and optical behavior," J. Cryst. Growth 310, 13-21 (2008).
  42. S. W. Lee, D. C. Oh, H. Goto, J. S. Ha, H. J. Lee, T. Hanada, M. W. Cho, T. Yao, S. K. Hong, H. Y. Lee, S. R. Cho, J. W. Choi, J. H. Choi, J. H. Jang, J. E. Shin, J. S. Lee, "Origin of forward leakage current in GaN-based light-emitting devices," Appl. Phys. Lett. 89, 132117 (2006).
  43. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, D. Walker, "Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes," IEEE Electron Device Lett. 23, 535-537 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited