OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 4 — Apr. 1, 2013
  • pp: 260–265

Observation of Electroluminescence From Quantum Wells Far From p-GaN Layer in Nitride-Based Light-Emitting Diodes

Zhiyuan Zheng, Zimin Chen, Yingda Chen, Hualong Wu, Shanjin Huang, Bingfeng Fan, Zhisheng Wu, Gang Wang, and Hao Jiang

Journal of Display Technology, Vol. 9, Issue 4, pp. 260-265 (2013)

View Full Text Article

Acrobat PDF (990 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We report the observation of electroluminescence from the first to fourth quantum wells (QWs) from the p-GaN layer in InGaN/GaN multiple-QW light-emitting diodes (LEDs) with various indium contents (4%–16%) in each QW. The investigated LED sample showed a lower turn-on voltage and ideality factor as well as a reduction of etching pit density compared with the reference sample. Also, the X-ray reciprocal space maps revealed a partial strain relaxation in the active region. The enhanced hole injection efficiency was attributed to the weakening of strain-induced polarization field in the QWs and the good crystalline quality.

© 2013 IEEE

Zhiyuan Zheng, Zimin Chen, Yingda Chen, Hualong Wu, Shanjin Huang, Bingfeng Fan, Zhisheng Wu, Gang Wang, and Hao Jiang, "Observation of Electroluminescence From Quantum Wells Far From p-GaN Layer in Nitride-Based Light-Emitting Diodes," J. Display Technol. 9, 260-265 (2013)

Sort:  Year  |  Journal  |  Reset


  1. E. F. Schubert, J. K. Kim, "Solid-state light sources getting smart," Science 308, 1274-1278 (2005).
  2. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 91, 183507 (2007).
  3. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, S. Lutgen, "On the importance of radiative and Auger losses in GaN-based quantum wells," Appl. Phys. Lett. 92, 261103 (2008).
  4. Y.-L. Li, Y.-R. Huang, Y.-H. Lai, "Investigation of efficiency droop behaviors of InGaN/GaN multiple-quantum-well LEDs with various well thicknesses," IEEE J. Select. Topics Quantum Electron. 15, 1128-1131 (2009).
  5. D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. F. Schubert, H. Shim, M.-H. Kim, C. Sone, "Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes," Appl. Phys. Lett. 99, 251115 (2011).
  6. I. V. Rozhansky, D. A. Zakheim, "Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density," Semiconductors 40, 839-845 (2006).
  7. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, M. R. Krames, "Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 92, 053502 (2008).
  8. C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, "Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer," Appl. Phys. Lett. 97, 261103 (2010).
  9. S. Hwang, W. J. Ha, J. K. Kim, J. Xu, J. Cho, E. F. Schubert, "Promotion of hole injection enabled by GaInN/GaN light-emitting triodes and its effect on the efficiency droop," Appl. Phys. Lett. 99, 181115 (2011).
  10. H. Zhao, G. Liu, R. A. Arif, N. Tansu, "Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes," Solid-State Electron. 54, 1119-1124 (2010).
  11. I. E. Titkov, D. A. Sannikov, Y.-M. Park, J.-K. Son, "Blue light emitting diode internal and injection efficiency," AIP Advanc. 2, 032117 (2012).
  12. K. T. Delaney, P. Rinke, C. G. Van de Walle, "Auger recombination rates in nitrides from first principles," Appl. Phys. Lett. 94, 191109 (2009).
  13. E. Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle, "Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes," Appl. Phys. Lett. 98, 161107 (2011).
  14. J. Hader, J. V. Moloney, S. W. Koch, "Temperature-dependence of the internal efficiency droop in GaN-based diodes," Appl. Phys. Lett. 99, 181127 (2011).
  15. T.-S. Kim, B.-J. Ahn, Y. Dong, K.-N. Park, J.-G. Lee, Y. Moon, H.-K. Yuh, S.-C. Choi, J.-H. Lee, S.-K. Hong, J.-H. Song, "Well-to-well non-uniformity in InGaN/GaN multiple quantum wells characterized by capacitance-voltage measurement with additional laser illumination," Appl. Phys. Lett. 100, 071910 (2011).
  16. N. Tansu, L. J. Mawst, "Current injection efficiency of InGaAsN quantum-well lasers," J. Appl. Phys. 97, 054502 (2005).
  17. N. Tansu, J.-Y. Yeh, L. J. Mawst, "Experimental evidence of carrier leakage in InGaAsN quantum-well lasers," Appl. Phys. Lett. 83, 2112-2114 (2003).
  18. J.-W. Shi, F.-M. Kuo, C.-W. Lin, W. Chen, L.-J. Yan, J.-K. Sheu, "Investigation of the efficiency-droop mechanism in vertical red light-emitting diodes using a dynamic measurement technique," IEEE Photon. Technol. Lett. 23, 1585-1587 (2011).
  19. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semicond. Sci. Technol. 27, 024001 (2012).
  20. D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, J. S. Speck, "Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy," J. Vac. Sci. Technol. A 30, 041513 (2012).
  21. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Expr. 19, A991-A1007 (2011).
  22. J. Zhang, N. Tansu, "Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes," J. Appl. Phys. 110, 113110 (2011).
  23. H. P. Zhao, G. Y. Liu, X.-H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, N. Tansu, "Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime," IET Optelectron. 3, 283-295 (2009).
  24. Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode," IEEE J. Select. Topics Quantum Electron. 15, 1066-1072 (2009).
  25. Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," J. Cryst. Growth 312, 1311-1315 (2010).
  26. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, C. Wetzel, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Appl. Phys. Lett. 98, 151102 (2011).
  27. Q. Li, J. J. Figiel, G. T. Wang, "Dislocation density reduction in GaN by dislocation filtering through a self-assembled monolayer of silica microspheres," Appl. Phys. Lett. 94, 231105 (2009).
  28. S.-M. Kim, H. S. Oh, J. H. Baek, K.-H. Lee, G. Y. Jung, J.-H. Song, H.-J. Kim, B.-J. Ahn, D. Yanqun, J.-H. Song, "Effects of patterned sapphire substrates on piezoelectric field in blue-emitting InGaN multiple quantum wells," IEEE Electron Device Lett. 31, 842-844 (2010).
  29. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki, "Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells," Jpn. J. Appl. Phys. 36, L382-L385 (1997).
  30. Y.-J. Lee, C.-H. Chiu, C. C. Ke, P. C. Lin, T.-C. Lu, H.-C. Kuo, S.-C. Wang, "Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate," IEEE J. Select. Topics Quantum Electron. 15, 1137-1143 (2009).
  31. C.-H. Jang, J.-K. Sheu, C. M. Tsai, S.-J. Chang, W.-C. Lai, M.-L. Lee, T. K. Ko, C. F. Shen, S. C. Shei, "Improved performance of GaN-based blue LEDs with the InGaN insertion layer between the MQW active layer and the n-GaN cladding layer," IEEE J. Quantum Electron. 46, 513-517 (2010).
  32. Z. Zheng, Z. Chen, Y. Xian, B. Fan, S. Huang, W. Jia, Z. Wu, G. Wang, H. Jiang, "Role of InGaN insertion layer on nitride-based light-emitting diodes," Jpn. J. Appl. Phys. 51, 072101 (2012).
  33. D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, D. D. Koleske, "The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 94, 081113 (2009).
  34. T. Lu, S. Li, C. Liu, K. Zhang, Y. Xu, J. Tong, L. Wu, H. Wang, X. Yang, Y. Yin, G. Xiao, Y. Zhou, "Advantages of GaN based light-emitting diodes with a p-InGaN hole reservoir layer," Appl. Phys. Lett. 100, 141106 (2012).
  35. N. Niu, H. Wang, J. Liu, N. Liu, Y. Xing, J. Han, J. D. Jun, G. Shen, "Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction," Solid-State Electron. 51, 860-864 (2007).
  36. I.-H. Kim, H.-S. Park, Y.-J. Park, T. Kim, "Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films," Appl. Phys. Lett. 73, 1634-1636 (1998).
  37. Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, "The values of minority carrier diffusion lengths and lifetimes in GaN and their implications for bipolar devices," Solid-State Electron. 44, 221-228 (2000).
  38. K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, H. Hasegawa, "Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence," Appl. Phys. Lett. 86, 052105 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited