OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 4 — Apr. 1, 2013
  • pp: 272–279

First-Principle Electronic Properties of Dilute-As GaNAs Alloy for Visible Light Emitters

Chee-Keong Tan, Jing Zhang, Xiao-Hang Li, Guangyu Liu, Benjamin O. Tayo, and Nelson Tansu

Journal of Display Technology, Vol. 9, Issue 4, pp. 272-279 (2013)

View Full Text Article

Acrobat PDF (1311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The band structure of dilute-As GaNAs alloy with the As composition range from 0% to 12.5% is studied by using First-Principle density-functional calculation. Our analysis shows that the dilute-As GaNAs alloy exhibits the direct band gap properties. The dilute-As GaNAs alloy shows a band gap range from 3.645 eV down to 2.232 eV with As content varying from 0% to 12.5%, which covers the blue and green spectral regime. This finding indicates the alloy as a potential candidate for photonic devices applications. The bowing parameter of 14.5 eV ± 0.5 eV is also obtained using line fitting with the First-Principle and experimental data. The effective masses for electrons and holes in dilute-As GaNAs alloy, as well as the split-off energy parameters, were also presented. Minimal interband Auger recombination is also suggested for the dilute-As GaNAs alloy attributing to the off-resonance condition for this process.

© 2013 IEEE

Chee-Keong Tan, Jing Zhang, Xiao-Hang Li, Guangyu Liu, Benjamin O. Tayo, and Nelson Tansu, "First-Principle Electronic Properties of Dilute-As GaNAs Alloy for Visible Light Emitters," J. Display Technol. 9, 272-279 (2013)

Sort:  Year  |  Journal  |  Reset


  1. S. Nakamura, "The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes," Science 281, 956-961 (1998).
  2. M. H. Crawford, "LEDs for solid-state lighting: Performance chanllenges and recent advances," IEEE J. Sel. Topics Quantum Electron. 15, 1028-1040 (2009).
  3. H. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express 19, A991-A1007 (2011).
  4. H. Zhao, G. Liu, R. A. Arif, N. Tansu, "Current injection efficiency quenching leading to efficiency droop in InGaN quantum well light-emitting diodes," Solid State Electron. 54, 1119-1124 (2010).
  5. X. Li, S. Kim, E. E. Reuter, S. G. Bishop, J. J. Coleman, "The incorporation of arsenic in GaN by metalorganic chemical vapor deposition," Appl. Phys. Lett. 72, 1990-1992 (1998).
  6. X. Li, S. G. Bishop, J. J. Coleman, "GaN epitaxial lateral overgrowth and optical characterization," Appl. Phys. Lett. 73, 1179-1181 (1998).
  7. X. Li, H. Liu, X. Ni, U. Ozgur, H. Morkoc, "Effect of carrier spillover and Auger recombination on the efficiency droop in InGaN-based blue LEDs," Superlattices and Microstructures 47, 118-122 (2010).
  8. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, "Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios," IEEE Photon. J. 3, 489-499 (2011).
  9. I. H. Brown, P. Blood, P. M. Smowton, J. D. Thomson, S. M. Olaizola, A. M. Fox, P. J. Parbrook, W. W. Chow, "Time evolution of the screening of piezoelectric fields in InGaN quantum wells," IEEE J. Quantum Electron. 42, 1202-1208 (2006).
  10. N. Tansu, J. Y. Yeh, L. J. Mawst, "High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum-well lasers by metalorganic chemical vapor deposition," IEEE J. Sel. Topics Quantum Electron. 9, 1220-1227 (2003).
  11. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, J. S. Harris, "On the temperature sensitivity of 1.5-μm GaInNAsSb lasers," IEEE J. Sel. Topics Quantum Electron. 11, 1089-1098 (2005).
  12. A. Lindsay, E. P. O'Reilly, "Unification of the band anticrossing and cluster-state models of dilute nitride semiconductor alloys," Phys. Rev. Lett. 93, 196402 (2004).
  13. K. Uesugi, N. Morooka, I. Suemune, "Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements," Appl. Phys. Lett. 74, 1254-1256 (1999).
  14. L. Xu, D. Patel, C. S. Menoni, J. Y. Yeh, L. J. Mawst, N. Tansu, "Optical determination of the electron effective mass of strain compensated In0.4Ga0.6As0.995N0.005/GaAs single quantum well," Appl. Phys. Lett. 89, 171112 (2006).
  15. A. Kimura, C. A. Paulson, H. F. Tang, T. F. Kuech, "Epitaxial GaN1-yAsy layers with high As content grown by metalorganic vapor phase epitaxy and their band gap energy," Appl. Phys. Lett. 84, 1489-1491 (2004).
  16. K. M. Yu, S. V. Novikov, R. Broesler, C. R. Staddon, M. Hawkridge, Z. Liliental-Weber, I. Demchenko, J. D. Denlinger, V. M. Kao, F. Luckert, R. W. Martin, W. Walukiewicz, C. T. Foxon, "Non-equilibrium GaNAs alloys with band gap ranging from 0.8–3.4 eV," Physica Status Solidi (c) 7, 1847-1849 (2010).
  17. X. H. Li, H. Tong, H. P. Zhao, N. Tansu, "Band structure calculation of dilute-As GaNAs by first principle," Proc. SPIE Photonics West 2010, Phys. & Simulation of Optoelectron. Devices XVIII (2010) pp. 75970H.
  18. T. Mattila, A. Zunger, "P-P and As-As isovalent impurity pairs in GaN: Interaction of deep t2 levels," Phys. Rev. B, Condens. Matter 59, 9943-9953 (1999).
  19. C. G. Van de Walle, "Arsenic impurities in GaN," Appl. Phys. Lett. 76, 1009-1011 (2000).
  20. K. Laaksonen, H.-P. Komsa, E. Arola, T. T. Rantala, R. M. Nieminen, "Computational study of GaAs1-xNx and GaN1-yAsy alloys and arsenic impurities in GaN," J. Phys.: Condens. Matter 18, 10097-10114 (2006).
  21. R. A. Arif, H. Zhao, N. Tansu, "Type-II InGaN-GaNAs quantum wells active regions for lasers applications," Appl. Phys. Lett. 92, 011104 (2008).
  22. H. Zhao, R. A. Arif, N. Tansu, "Self consistent gain analysis of type-II ‘W’ InGaN-GaNAs quantum well lasers," J. Appl. Phys. 104, 043104 (2008).
  23. J. Wu, W. Walukiewicz, K. M. Yu, J. D. Denlinger, W. Shan, J. W. Ager, IIIA. Kimura, H. F. Tang, T. F. Kuech, "Valence band hybridization in N-rich GaN1-xAsx alloys," Phys. Rev. B, Condens. Matter 70, 115214 (2004).
  24. Material Designs Inc.Sante FeNMUSA“MedeA-VASP,” http://www.materialsdesign.com..
  25. V. Fiorentini, A. Baldereschi, "Dielectric scaling of the self-energy scissor operator in semiconductors and insulators," Phys. Rev. B, Condens. Matter 51, 17196-17198 (1995).
  26. G. Kresse, J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set," Phys. Rev. B, Condens. Matter 54, 11169-11186 (1996).
  27. M. Shishkin, M. Marsman, G. Kresse, "Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections," Phys. Rev. Lett. 99, 246403 (2007).
  28. P. D. C. King, T. D. Veal, F. Fuchs, Ch. Y. Wang, D. J. Payne, A. Bourlange, H. Zhang, G. R. Bell, V. Cimalla, O. Ambacher, R. G. Egdell, F. Bechstedt, C. F. McConville, "Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3," Phys. Rev. B, Condens. Matter 79, 205211 (2009).
  29. Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica 34, 149-154 (1967).
  30. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys," J. Appl. Phys. 89, 5815-5875 (2001).
  31. M. Suzuki, T. Uenoyama, "First-principles calculations of effective-mass parameters of AlN and GaN," Phys. Rev. B, Condens. Matter 52, 8132-8139 (1995).
  32. S. J. Sweeney, Z. Batool, K. Hild, S. R. Jin, T. J. C. Hosea, "The potential role of bismide alloys in future photonic devices," 13th Int. Conf. on Transparent Opt. Networks (ICTON) (2011).
  33. K. T. Delaney, P. Rinke, C. G. Van de Walle, "Auger recombination rates in nitrides from first principles," Appl. Phys. Lett. 94, 191109 (2009).
  34. M. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, "Status and future of high-power light-emitting diodes for solid-state lighting," J. Display Technol. 3, 160-175 (2007).
  35. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, S. Lutgen, "On the importance of radiative and Auger losses in GaN-based quantum wells," Appl. Phys. Lett. 92, 261103 (2008).
  36. E. Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle, "Indirect Auger recombination as a cause of efficiency droop in nitride light emitting diodes," Appl. Phys. Lett. 98, 161107 (2011).
  37. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, 141101 (2007).
  38. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 91, 183507 (2007).
  39. S. F. Chichibu, T. Azuhata, M. Sugiyama, T. Kitamura, Y. Ishida, H. Okumura, H. Nakanishi, T. Sota, T. Mukai, "Optical and structural studies in InGaN quantum well structure laser diodes," J. Vacuum Sci. Technol. B: Microelectron. and Nanometer Structures 19, 2177-2183 (2001).
  40. J. Xie, X. Ni, Q. Fan, R. Shimada, U. Ozgur, H. Morkoc, "On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers," Appl. Phys. Lett. 93, 121107 (2008).
  41. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Y. T. Rebane, D. V. Tarkhin, Y. G. Shreter, "Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs," Semicond. 40, 605-610 (2006).
  42. A. Sugimura, "Band-to-band Auger effect in long wavelength multinary III-V semiconductor lasers," IEEE J. Quantum Electron. QE-18, 352-363 (1982).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited