OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 5 — May. 1, 2013
  • pp: 301–316

Surface-Roughened Light-Emitting Diodes: An Accurate Model

Aurelien David

Journal of Display Technology, Vol. 9, Issue 5, pp. 301-316 (2013)


View Full Text Article

Acrobat PDF (2778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Surface roughening is frequently employed to increase light extraction from light-emitting diodes (LEDs), especially in the important case of III-Nitride LEDs. We explore the physics governing this scheme. We introduce a numerical model, based on solving Maxwell's equations, to accurately describe scattering by a roughened semiconductor interface. This model reveals the complex angular dependence of the scattering properties. We then couple this approach to an LED light extraction model and predict how surface roughness impacts light extraction. We focus on two important cases, thin-film LEDs and volumetric LEDs. We show that optical losses in the LED dictate light extraction, and that volumetric LEDs offer an opportunity for ultimate efficiency.

© 2013 IEEE

Citation
Aurelien David, "Surface-Roughened Light-Emitting Diodes: An Accurate Model," J. Display Technol. 9, 301-316 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-5-301


Sort:  Year  |  Journal  |  Reset

References

  1. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, M. G. Craford, "Status and future of high-power light-emitting diodes for solid-state lighting," J. Display Technol. 3, 160-175 (2007).
  2. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, "30% external quantum efficiency from surface textured, thin-film light-emitting diodes," Appl. Phys. Lett. 63, 2174-2176 (1993).
  3. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening," Appl. Phys. Lett. 84, 855-857 (2004).
  4. O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, M. R. Krames, "High performance thin-film flip-chip InGaN-GaN light-emitting diodes," Appl. Phys. Lett. 89, 071109 (2006).
  5. S. J. Lee, "Analysis of light-emitting diodes by Monte Carlo photon simulation," Appl. Opt. 40, 1427-1437 (2001).
  6. E. Yablonovitch, "Statistical ray optics," J. Opt. Soc. Amer. 72, 899-907 (1982).
  7. H. W. Deckman, C. B. Roxlo, E. Yablonovitch, "Maximum statistical increase of optical absorption in textured semiconductor films," Opt. Lett. 8, 491-493 (1983).
  8. M. Boroditsky, R. Ragan, E. Yablonovitch, "Absorption enhancement in ultra-thin textured AlGaAs films," Solar Energy Mater. Solar Cells 57, 1-7 (1999).
  9. M. Boroditsky, E. Yablonovitch, "Light-emitting-diode extraction efficiency," Proc. SPIE 3002, 119-122 (1997).
  10. R. Windisch, S. Schoberth, S. Meinlschmidt, P. Kiesel, A. Knobloch, P. Heremans, B. Dutta, G. Borghs, G. H. Dohler, "Light propagation through textured surfaces," J. Opt. A: Pure Appl. Opt. 1, 512 (1999).
  11. R. Windisch, M. Kuijk, B. Dutta, A. Knobloch, P. Kiesel, G. H. Doehler, G. Borghs, P. L. Heremans, "Nonresonant-cavity light-emitting diodes," Proc. SPIE 3938, 70-76 (2000).
  12. R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Dohler, P. Heremans, "Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes," IEEE J. Sel. Topics Quantum Electron. 8, 248-255 (2002).
  13. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, T. Limperis, “Geometric considerations and nomenclature for reflectance,” (1977).
  14. D. M. Whittaker, I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
  15. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
  16. K. E. Torrance, E. M. Sparrow, "Theory for off-specular reflection from roughened surfaces," J. Opt. Soc. Amer. 57, 1105 (1967).
  17. X. D. He, K. E. Torrance, F. X. Sillion, D. P. Greenberg, "A comprehensive physical model for light reflection," Computer Graphics 25, (1991).
  18. S. K. Nayar, K. Ikeuchi, T. Kanade, "Surface reflection—Physical and geometrical perspectives," IEEE Trans. Pattern Anal. Mach. Intell. 13, 611-634 (1991).
  19. A. David, H. Benisty, C. Weisbuch, "Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs," J. Display Technol. 3, 133-148 (2007).
  20. H. Benisty, P. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, D. Cassagne, "Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals," Opt. Quantum Electron. 34, 205-215 (2002).
  21. A. David, H. Benisty, C. Weisbuch, "Photonic crystal light-emitting sources," Rep. Progr. Phys. 75, 126501 (2012).
  22. A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, C. Weisbuch, H. Benisty, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
  23. A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, H. Benisty, "Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution," Appl. Phys. Lett. 88, 061124 (2006).
  24. H. Benisty, H. De Neve, C. Weisbuch, "Impact of planar microcavity effects on light extraction—Part I: Basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998).
  25. H. Benisty, H. De Neve, C. Weisbuch, "Impact of planar microcavity effects on light extraction—Part II: Selected exact simulations and role of photon recycling," IEEE J. Quantum Electron. 34, 1632-1643 (1998).
  26. Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221-2223 (2003).
  27. C. Weisbuch, A. David, T. Fujii, C. Schwach, S. P. DenBaars, S. Nakamura, M. Rattier, H. Benisty, R. Houdr, R. Stanley, J. F. Carlin, T. F. Krauss, C. J. M. Smith, "Recent results and latest views on microcavity LEDs," Proc. SPIE—Int. Soc. Opt. Eng. 5366, (2004).
  28. A. David, "High efficiency GaN-based LEDs: Light extraction by photonic crystals," Ann. Phys. 31, (2006).
  29. M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, D. Collins, "High-power truncated-inverted-pyramid (AlxGa1-x) light-emitting diodes exhibiting >50 percent external quantum efficiency," Appl. Phys. Lett. 75, 2365-2367 (1999).
  30. D. Ochoa, Diodes electroluminescentes planaires a haut rendement d'extraction lumineuse Ph.D. dissertation EPFL (2001).
  31. X. H. Wang, P. T. Lai, H. W. Choi, "The contribution of sidewall light extraction to efficiencies of polygonal light-emitting diodes shaped with laser micromachining," J. Appl. Phys. 108, 023110 (2010).
  32. M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, M. R. Krames, "Bulk GaN based violet light-emitting diodes with high efficiency at very high current density," Appl. Phys. Lett. 101, 223509 (2012).
  33. A. David, H. Benisty, C. Weisbuch, "Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape," Phys. Rev. B 73, (2006).
  34. M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited