OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 5 — May. 1, 2013
  • pp: 339–345

Design and Analysis of “Chess Board” Like Photonic Crystal Structure for Improved Light Extraction in GaN/InGaN LEDs

Saroj Kanta Patra, Sonachand Adhikari, and Suchandan Pal

Journal of Display Technology, Vol. 9, Issue 5, pp. 339-345 (2013)


View Full Text Article

Acrobat PDF (1269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we have proposed a “Chess board” like photonic crystal (PhC) structure on top surface of p-GaN/SiO2 layer in conventional LED, on top surface of n-GaN layer in vertical LED and an embedded PhC structure in n-GaN layer for achieving an improved light extraction in GaN/InGaN LEDs. The results are compared with that of the LED structures with conventional 2-D PhC structures and of the conventional LEDs. Results from these simulations show that the maximum light extraction for conventional LED having “Chess board” like structure occurs for a grating period of 0.6 μm with a grating-depth of 0.18 μm, which gives ~4 times enhancement compared to that of conventional LED and 1.2–1.4 times compared to that of LED with conventional 2-D PhCs. In case of a vertical LED, the maximum enhancement in light extraction occurs for the same grating-period with a depth of 0.5 μm, which is ~3.5 times compared to that of the conventional vertical LEDs. We have also simulated our proposed structure on top of SiO2-on-p-GaN layer in order to avoid the etching of p-GaN layer, which shows ~2.2 times enhancement in comparison to that of conventional LED. For the proposed embedded PhC structure in n-GaN layer, the light extraction is enhanced by a factor of 2.8–3.5 as compared to the conventional LED.

© 2013 IEEE

Citation
Saroj Kanta Patra, Sonachand Adhikari, and Suchandan Pal, "Design and Analysis of “Chess Board” Like Photonic Crystal Structure for Improved Light Extraction in GaN/InGaN LEDs," J. Display Technol. 9, 339-345 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-5-339


Sort:  Year  |  Journal  |  Reset

References

  1. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Expr. 19, A991-A1007 (2011).
  2. D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, J. S. Speck, "Indium and impurity incorporation in InGaN films on polar, nonpolar, semipolar GaN orientations grown by ammonia molecular beam epitaxy," J. Vac. Sci. Technol. A 30, 041513-1-041513-8 (2012).
  3. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semicond. Sci. Technol. 27, 024001-1-024001-14 (2012).
  4. H. Zhao, G. Liu, R. A. Arif, N. Tansu, "Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes," Solid-State Electron. 54, 1119-1124 (2010).
  5. G.-B. Lin, D. Meyaard, J. Cho, E. F. Schubert, H. Shim, C. Sone, "Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency," Appl. Phys. Lett. 100, 161106-1-161106-4 (2012).
  6. H. J. Kim, S. Choi, S.-S. Kim, J.-H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, F. A. Ponce, "Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes," Appl. Phys. Lett. 96, 101102-1-101102-3 (2010).
  7. Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," J. Crystal Growth 312, 1311-1315 (2010).
  8. Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode," IEEE J. Select. Topics Quantum Electron. 15, 1066-1072 (2009).
  9. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, C. Wetzel, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Appl. Phys. Lett. 98, 151102-1-151102-3 (2011).
  10. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, M. M. Sigalas, "InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures," Appl. Phys. Lett. 84, 3885-3887 (2004).
  11. C. C. Wang, H. Ku, C. C. Liu, K. K. Chong, C. I. Hung, Y. H. Wang, M. P. Houng, "Enhancement of the light output performance for GaN-based light-emitting diodes by bottom pillar structure," Appl. Phys. Lett. 91, 121109-1-121109-3 (2007).
  12. C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, G. C. Chi, "Nitride-based near-ultraviolet light emitting diodes with meshed pGaN," Appl. Phys. Lett. 90, 142115-1-142115-3 (2007).
  13. E. Y. Schnitzer, C. Caneau, T. J. Gmitter, "Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from Al-GaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).
  14. E. Rangel, E. Matioli, Y.-S. Choi, C. Weisbuch, J. S. Speck, E. L. Hu, "Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes," Appl. Phys. Lett. 98, 081104-1-081104-3 (2011).
  15. E. Matioli, B. Fleury, E. Rangel, T. Melo, E. Hu, J. Speck, C. Weisbuch, "High extraction efficiency GaN-based photonic-crystal light-emitting diodes: Comparison of extraction lengths between surface and embedded photonic crystals," Appl. Phys. Exp. 3, 032103-1-032103-3 (2010).
  16. J. Jewell, D. Simeonov, S.-C. Huang, Y.-L. Hu, S. Nakamura, J. Speck, C. Weisbuch, "Double embedded photonic crystals for extraction of guided light in light-emitting diodes," Appl. Phys. Lett 100, 171105-1-171105-4 (2012).
  17. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, "Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios," IEEE Photon. J. 3, 489-499 (2011).
  18. Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, J. F. Gilchrist, "Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays," Appl. Phys. Lett. 91, 221107-1-221107-3 (2007).
  19. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, N. Tansu, "Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses," IEEE J. Select. Topics Quantum Electron. 15, 1218-1225 (2009).
  20. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, "Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures," Opt. Expr. 17, 13747-13757 (2009).
  21. W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, "Light extraction of organic light emitting diodes by defective hexagonal-close-packed array," Adv. Funct. Mater. 22, 3454-3459 (2012).
  22. D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, Q.-H. Park, "Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns," Appl. Phys. Lett 87, 203508-1-203508-3 (2005).
  23. H. J. Kim, D.-U. Kim, Y.-G. Roh, J. Yu, H. Jeon, Q.-H. Park, "Photonic crystal alloys: A new twist in controlling photonic band structure properties," Opt. Expr. 16, 6579-6585 (2008).
  24. J. Lee, D.-U. Kim, H. Jeon, "Photonic crystal digital alloys and their band structure properties," Opt. Expr. 19, 19255-19264 (2011).
  25. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, E. F. Schubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997).
  26. M. Rattier, H. Benisty, R. P. Stanley, J.-F. Carlin, R. Houdré, U. Oesterle, C. J. M. Smith, C. Weisbuch, T. F. Krauss, "Toward ultrahigh-efficiency aluminum oxide microcavity light-emitting diodes: Guided mode extraction by photonic crystals," IEEE J. Select. Topics Quantum Electron. 8, 238-247 (2002).
  27. H. Rigneault, F. Lemarchand, A. Sentenac, "Dipole radiation into grating structures," J. Opt. Soc. Am. A 17, 1048-1058 (2000).
  28. R. K. Lee, Y. Xu, A. Yariv, "Modified spontaneous emission from a two dimenasional photonic bandgap crystal slab," J. Opt. Soc. Am. B 17, 1438-1442 (2000).
  29. A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, H. Benisty, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124-1-061124-3 (2006).
  30. A. David, H. Benisty, C. Weisbuch, "Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs," IEEE J. Disp. Technol. 3, 133-148 (2007).
  31. J. J. Wierer, A. David, M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efiiciency," Nat. Photon. 3, 163-169 (2009).
  32. S. J. Pearton, J. C. Zolper, R. J. Shul, F. Ren, "GaN: Processing, defects and devices," J. Appl. Phys. 86, 1-78 (1999).
  33. S.-K. Kim, H.-S. Ee, K. D. Song, H.-G. Park, "Design of out-coupling structures with metal-dielectric surface relief," Opt. Expr. 20, 17230-17236 (2012).
  34. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, Y. R. Do, "A high-extraction-efficiency nanopatterned organic light emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
  35. D. H. Long, I. K. Hwang, S. W. Ryu, "Optimization of a hexagonal photonic crystal light-emitting diode for enhanced light extraction by using a FDTD simulation," J. Korean Phys. Soc. 51, 1400-1403 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited