OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 5 — May. 1, 2013
  • pp: 365–370

InGaN-Based Resonant-Cavity Light-Emitting Diodes Fabricated With a Ta2O5/SiO2 Distributed Bragg Reflector and Metal Reflector for Visible Light Communications

Chia-Lung Tsai, Chih-Ta Yen, Wei-Jhih Huang, Zhong-Fan Xu, and Sun-Chien Ko

Journal of Display Technology, Vol. 9, Issue 5, pp. 365-370 (2013)


View Full Text Article

Acrobat PDF (1313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The potential of visible light communications based upon phosphor-converted white resonant-cavity light-emitting diodes (RCLEDs) is investigated experimentally. To fabricate a blue InGaN RCLED, a λ/4-thick Ta2O5/SiO2 distributed Bragg reflector, along with a metallic Ag layer, were respectively coated onto the top and bottom of normal LEDs to form an optical cavity. As evaluated from the emission spectrum of blue RCLEDs, the discrepancy of the expected cavity length from the measurements suggests that cavity oscillation may mostly occur in the GaN-based epistructures. In addition to the presence of the optical cavity effect, the incorporation of a bottom reflector is useful to increase the light extraction efficiency of the RCLEDs. As a result, these RCLEDs exhibit improved operational characteristics over normal LEDs in terms of light output power, external quantum efficiency, spectral purity, and directionality. With an increase in injection current, the enhancement of the spontaneous emission rate is responsible for the improved quality of eye patterns in blue RCLEDs operating at a transmission rate of 100 Mbit/s and 175 mA . After encapsulating the blue RCLEDs with a phosphor layer, we found that white RCLEDs have the capacity for free-space optical communication with a data rate of 12 Mbit/s.

© 2012 IEEE

Citation
Chia-Lung Tsai, Chih-Ta Yen, Wei-Jhih Huang, Zhong-Fan Xu, and Sun-Chien Ko, "InGaN-Based Resonant-Cavity Light-Emitting Diodes Fabricated With a Ta2O5/SiO2 Distributed Bragg Reflector and Metal Reflector for Visible Light Communications," J. Display Technol. 9, 365-370 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-5-365


Sort:  Year  |  Journal  |  Reset

References

  1. M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, M. G. Craford, "Status and future of high-power light-emitting diodes for solid-state lighting," J. Display Technol. 3, 160-175 (2007).
  2. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semicond. Sci. Technol. 27, 024001-1-024001-14 (2012).
  3. D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, J. S. Speck, "Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy," J. Vac. Sci. Technol. A 30, 041513-1-041513-8 (2012).
  4. H. Zhao, G. Liu, N. Tansu, "Analysis of InGaN-delta-InN quantum wells for light-emitting diodes," Appl. Phys. Lett. 97, 131114-1-131114-3 (2010).
  5. J. Zhang, N. Tansu, "Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes," J. Appl. Phys. 110, 113110-1-113110-5 (2011).
  6. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express 19, A991-A1007 (2011).
  7. H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, N. Tansu, "Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime," IET Optoelectron. 3, 283-295 (2009).
  8. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, N. Tansu, "Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography," Nanoscale Res. Lett. 6, 342-1-342-10 (2011).
  9. H. Zhao, J. Zhang, G. Liu, N. Tansu, "Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes," Appl. Phys. Lett. 98, 151115-1-151115-3 (2011).
  10. Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode," IEEE J. Sel. Topics Quantum Electron. 15, 1066-1072 (2009).
  11. Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," J. Cryst. Growth 312, 1311-1315 (2010).
  12. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, C. Wetzel, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Appl. Phys. Lett. 98, 151102-1-151102-3 (2011).
  13. H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, F. A. Ponce, "Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes," Appl. Phys. Lett. 96, 101102-1-101102-3 (2012).
  14. H. Zhao, G. Liu, R. A. Arif, N. Tansu, "Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes," Solid-State Electron. 54, 1119-1124 (2010).
  15. C. L. Tsai, G. C. Fan, Y. S. Lee, "Effects of strain-compensated AlGaN/InGaN superlattice barriers on the optical properties of InGaN light-emitting diodes," Appl. Phys. A 104, 319-323 (2011).
  16. J. J. Wierer, A. David, M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nature Photon. 3, 163-169 (2009).
  17. E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, E. L. Hu, "Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes," Appl. Phys. Lett. 98, 081104-1-081104-3 (2011).
  18. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, N. Tansu, "Optimization of light extraction efficiency of III-nitride LEDs with self-assembled colloidal-based microlenses," IEEE J. Sel. Topics Quantum Electron. 15, 1218-1225 (2009).
  19. Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, J. F. Gilchrist, "Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays," Appl. Phys. Lett. 91, 221107-1-221107-3 (2007).
  20. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, "Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios," IEEE Photon. J. 3, 489-499 (2011).
  21. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, "Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures," Opt. Express 17, 13747-13757 (2009).
  22. W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, F. So, "Light extraction of organic light emitting diodes by defective hexagonal-close-packed array," Adv. Func. Mater. 22, 3454-3459 (2012).
  23. H. Benisty, H. D. Neve, C. Weisbuch, "Impact of planar microcavity effects on light extraction-part I: Basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998).
  24. E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, G. J. Zydzik, "Highly efficient light-emitting diodes with microcavities," Science 265, 943-945 (1994).
  25. S. Y. Huang, R. H. Horng, J. W. Shi, H. C. Kuo, D. S. Wuu, "High-performance InGaN-based green resonant-cavity light-emitting diodes for plastic optical fiber applications," J. Lightw. Technol. 27, 4084-4090 (2009).
  26. Y. Tanaka, T. Komine, S. Haruyama, M. Nakagawa, "Indoor visible light data transmission system utilizing white LED lights," IEICE Trans. Commun. E86-B, 2440-2454 (2003).
  27. D. C. O'Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, R. J. Mears, "Integrated transceivers for optical wireless communications," IEEE J. Sel. Topics Quantum Electron. 11, 173-183 (2005).
  28. Z. Liu, S. Liu, K. Wang, X. Luo, "Status and prospects for phosphor-based white LED packaging," Front. Optoelectron. China 2, 119-140 (2009).
  29. R. W. Martin, P. R. Edwards, H. S. Kim, K. S. Kim, T. Kim, I. M. Watson, M. D. Dawson, Y. Cho, T. Sands, N. W. Cheung, "Optical spectroscopy of GaN microcavities with thicknesses controlled using a plasma etchback," Appl. Phys. Lett. 79, 3029-3031 (2001).
  30. C. C. Lin, C. T. Lee, "GaN-based resonant-cavity light-emitting diodes with top and bottom dielectric distributed Bragg reflectors," IEEE Photon. Technol. Lett. 22, 1291-1293 (2010).
  31. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, M. R. Krames, "Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 92, 053502-1-053502-3 (2008).
  32. Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221-2223 (2003).
  33. N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, T. Jimbo, "Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire," Appl. Phys. Lett. 76, 1804-1806 (2000).
  34. D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, H. Benisty, "High-efficiency semiconductor resonant-cavity light-emitting diodes: A review," IEEE J. Sel. Topics Quantum Electron. 8, 189-206 (2002).
  35. H. S. Oh, J. H. Joo, J. H. Lee, J. H. Baek, J. W. Seo, J. S. Kwak, "Structural optimization of high-power AlGaInP resonant cavity light-emitting diodes for visible light communications," Jpn. J. Appl. Phys. 47, 6214-6216 (2008).
  36. M. Ahmed, A. E. Lafi, "Large-signal analysis of analog intensity modulation of semiconductor lasers," Opt. Laser Technol. 40, 809-819 (2008).
  37. M. Guina, S. Orsila, M. Dumitrescu, M. Saarinen, P. Sipilä, V. Vilokkinen, B. Roycroft, P. Uusimaa, M. Toivonen, M. Pessa, "Light-emitting diode emitting at 650 nm with 200-MHz small-signal modulation bandwidth," IEEE Photon. Technol. Lett. 12, 786-788 (2000).
  38. S. C. Allen, A. J. Steckl, "A nearly ideal phosphor-converted white light-emitting diode," Appl. Phys. Lett. 92, 143309-1-143309-3 (2008).
  39. H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, E. T. Won, "100-Mb/s NRZ visible light communications using a postequalized white LED," IEEE Photon. Technol. Lett. 21, 1063-1065 (2009).
  40. K. D. Langer, J. Vu?i?, C. Kottke, L. F. del Rosal, S. Nerreter, J. Walewski, "Advances and prospects in high-speed information broadcast using phosphorescent white-light LEDs," 11th Int. Conf. on Transparent Optical Netw. (ICTON '09) (2009) pp. 1-6.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited