OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 5 — May. 1, 2013
  • pp: 371–376

A Stress Analysis of Transferred Thin-GaN Light-Emitting Diodes Fabricated by Au-Si Wafer Bonding

Bo-Wen Lin, Nian-Jheng Wu, Yew Chung Sermon Wu, and S. C. Hsu

Journal of Display Technology, Vol. 9, Issue 5, pp. 371-376 (2013)

View Full Text Article

Acrobat PDF (577 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Thin-GaN light-emitting diodes were fabricated by Au-Si wafer bonding and laser lift-off. The relaxation process of the thermal strain in the transferred GaN films on a Si substrate was studied by varying the bonding film thickness of the Au over a wide range from 7 µm to 40 µm. The transferred GaN films were found to be strained by the biaxial compressive stress. A 10 µm Au bonding layer thickness was proven to have the lowest residual compressive stress, and the complete compressive stress variation throughout the entire thin-GaN fabrication process is discussed. Finally, we changed the biaxial in-plane stress of the transferred GaN thin film by controlling the bonding conditions, including the bonding layer thickness and the bonding temperature.

© 2013 IEEE

Bo-Wen Lin, Nian-Jheng Wu, Yew Chung Sermon Wu, and S. C. Hsu, "A Stress Analysis of Transferred Thin-GaN Light-Emitting Diodes Fabricated by Au-Si Wafer Bonding," J. Display Technol. 9, 371-376 (2013)

Sort:  Year  |  Journal  |  Reset


  1. S. Nakamura, Y. Harada, M. Seno, "Novel metalorganic chemical vapor deposition system for GaN growth," Appl. Phys. Lett. 58, 2021 (1991).
  2. S. Nakamura, M. Senoh, T. Mukai, "High-power lnGaN/GaN double-heterostructure violet light emitting diodes," Appl. Phys. Lett. 62, 2390 (1993).
  3. N. Tansu, H. Zhao, G. Liu, X.-H. Li, J. Zhang, H. Tong, Y.-K. Ee, "III-nitride photonics," IEEE Photon. J. 2, 241-248 (2010).
  4. S. T. Tan, X. W. Sun, H. V. Demir, S. P. DenBaars, "Advances in the LED materials and architectures for energy-saving solid-state lighting toward lighting revolution," IEEE Photon. J. 4, 613-619 (2012).
  5. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semiconductor Sci. and Technol. 27, 024001 (2012).
  6. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Expr. 19, A991-A1007 (2011).
  7. J. Zhang, N. Tansu, "Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes," J. Appl. Phys. 110, 113110 (2011).
  8. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, N. Tansu, "Selective area epitaxy of ultra-high density InGaN guantum dots by diblock copolymer lithography," Nanoscale Res. Lett. 6, 342 (2011).
  9. H. P. Zhao, G. Y. Liu, X.-H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. T. Penn, N. Tansu, "Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime," IET Optoelectron. 3, 283-295 (2009).
  10. H. Zhao, N. Tansu, "Optical gain characteristics of staggered InGaN quantum wells lasers," J. Appl. Phys. 107, 113110 (2010).
  11. J. Zhang, H. Zhao, N. Tansu, "Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid-and deep-ultraviolet spectral regimes," Appl. Phys. Lett. 98, 171111 (2011).
  12. H. Zhao, J. Zhang, G. Liu, N. Tansu, "Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes," Appl. Phys. Lett. 98, 151115 (2011).
  13. H. Zhao, G. Liu, R. A. Arif, N. Tansu, "Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes," Solid-State Electron. 54, 1119-1124 (2010).
  14. H. J. Kim, S. Choi, S.-S. Kim, J.-H. Ryou, P. D. Yoder, "Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes," Appl. Phys. Lett. 96, 101102 (2010).
  15. Y.-K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode," IEEE J. Sel. Topics Quantum Electron. 15, 1066-1072 (2009).
  16. Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," J. Cryst. Growth 312, 1311-131 (2010).
  17. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Appl. Phys. Lett. 98, 151102 (2011).
  18. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, "Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios," IEEE Photon. J. 3, 489 (2011).
  19. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, "Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures," Opt. Expr. 17, 13747 (2009).
  20. J. J. Wierer, A. David, Jr.M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nature Photon. 3, 163-169 (2009).
  21. A. Sztein, H. Ohta, J. Sonoda, A. Ramu, J. E. Bowers, S. P. DenBaars, S. Nakamura, "GaN-based integrated lateral thermoelectric device for micro-power generation," Appl. Phys. 109, 053706 (2011).
  22. J. Zhang, H. Tong, G. Liu, J. A. Herbsommer, G. S. Huang, N. Tansu, "Characterizations of seebeck coefficients and thermoelectric figures of merit for AlInN alloys with various In-contents," J. Appl. Phys. 109, 053706 (2011).
  23. B. N. Pantha, I.-W. Feng, K. Aryal, J. Li, J.-Y. Lin, H.-X. Jiang, "Erbium-doped AlInGaN alloys as high-temperature thermoelectric materials," Appl. Phys. Express 4, 051001 (2011).
  24. W. S. Wong, T. Sands, "InxGa1-xN light emitting diodes on Si substrates fabricated by Pd-In metal bonding and laser lift-off," Appl. Phys. Lett. 77, 2822 (2000).
  25. H. K. Cho, S.-K. Kim, D. K. Bae, B.-C. Kang, J. S. Lee, Y.-H. Lee, "Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes," IEEE Photon. Technol. Lett. 20, 2096-2098 (2008).
  26. A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, "Photonic crystal laser lift-off GaN light-emitting diodes," Appl. Phys. Lett. 88, 133514 (2006).
  27. M. H. Doan, S. Kim, J. J. Lee, H. Lim, F. Rotermund, "Influence of laser lift-off on optical and structural properties of InGaN/GaN vertical blue light emitting diodes," AIP Adv. 2, 022122 (2012).
  28. A. Bykhovski, B. Gelmont, M. Shur, A. Khan, "Current-voltage characteristics of strained piezoelectric structures," J. Appl. Phys. 77, 1616 (1995).
  29. S. C. Hsu, C. Y. Liu, "Fabrication of thin-GaN LED structures by Au-Si wafer bonding," Electrochem. and Solid-State Lett. 9, G171-G173 (2006).
  30. T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, K. Manabe, "Thermal stress in GaN epitaxial layers grown on sapphire substrates," J. Appl. Phys. 77, 4389 (1995).
  31. V. Y. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobson, O. K. Semchinova, "Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC," J. Appl. Phys. 82, 5097 (1997).
  32. G. Attolini, L. Francesio, P. Franzosi, C. Pelosi, S. Gennari, P. P. Lottici, "Raman scattering study of residual strain in GaAs/InP heterostructures," J. Appl. Phys. 75, 4156 (1993).
  33. S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, N. Tansu, J. B. Khurgin, "Phonon-assisted ultraviolet anti-Stokes photoluminescence from GaN film grown on Si(111) substrate," Appl. Phys. Lett. 93, 201107 (2008).
  34. B. Bokhonov, "Nanocrystalline powder formation during mechanical alloying of W and Si," J. Alloys and Compounds 199, (1993).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited