OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 6 — Jun. 1, 2013
  • pp: 419–426

Quantum-Dot-Based Solid-State Lighting With Electric-Field-Tunable Chromaticity

Jeffrey Y. Tsao, Igal Brener, David F. Kelley, and S. Ken Lyo

Journal of Display Technology, Vol. 9, Issue 6, pp. 419-426 (2013)

View Full Text Article

Acrobat PDF (1164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Solid-state lighting is currently based on blue light-emitting diodes combined with wavelength downconversion via phosphors. Replacing the phosphors with quantum dots has a number of potential advantages, including narrowband and size-tailorable emission spectra. Here, we point out another advantage: the ability to perform real-time tuning of chromaticity of solid-state lighting by altering quantum dot absorption or emission wavelengths and oscillator strengths using electric fields. We discuss a possible architecture for such a solid-state lamp, and the chromaticity ranges that could be obtained for given ranges of absorption or emission wavelength and oscillator strength changes.

© 2013 IEEE

Jeffrey Y. Tsao, Igal Brener, David F. Kelley, and S. Ken Lyo, "Quantum-Dot-Based Solid-State Lighting With Electric-Field-Tunable Chromaticity," J. Display Technol. 9, 419-426 (2013)

Sort:  Year  |  Journal  |  Reset


  1. Y. Shiimizu, K. Sakano, Y. Noguchi, T. Moriguchi, Light emitting device with blue light LED and phosphor components U.S. Patent 6 614 179 (2003).
  2. R. Mueller-Mach, G. O. Mueller, M. R. Krames, T. Trottier, "High-power phosphor-converted light-emitting diodes based on III-Nitrides," IEEE J. Sel. Topics Quantum Electron. 8, 339-345 (2002).
  3. R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, P. Schmidt, "Highly efficient all-nitride phosphor-converted white light emitting diode," Phys. Status Solid. 202, 1727-1732 (2005).
  4. J. K. Kim, E. F. Schubert, "Solid-state light sources getting smart," Science 308, 1274-1278 (2005).
  5. P. R. Boyce, Human Factors in Lighting (Taylor & Francis, 2003).
  6. S. Muthu, F. J. P. Schuurmans, M. D. Pashley, "Red, green, and blue LEDs for white light illumination," IEEE J. Sel. Topics Quantum Electron. 8, 333-338 (2002).
  7. A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, G. Kurilcik, Z. Bliznikas, K. Breive, J. Krupic, A. Rupsys, A. Novickovas, P. Vitta, A. Navickas, V. Raskauskas, M. S. Shur, R. Gaska, "Quadrichromatic white solid-state lamp with digital feedback," Proc. SPIE (2004) pp. 185-198.
  8. A. Neumann, J. J. Wierer, Jr.W. Davis, Y. Ohno, S. R. J. Brueck, J. Y. Tsao, "Four-color laser white illuminant demonstrating high color rendering quality," Opt. Express 19, A982-A990 (2011).
  9. J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, J. Y. Tsao, "Research challenges to ultra-efficient inorganic solid-state lighting," Laser Photon. Rev. 1, 307-333 (2007).
  10. R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Shchekin, P. J. Schmidt, H. Bechtel, C.-H. Chen, O. Steigelmann, "All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes," Phys. Status Solid. RRL 3, 215-217 (2009).
  11. J. H. Oh, J. R. Oh, H. K. Park, Y. G. Sung, Y. R. Do, "New paradigm of multi-chip white LEDs: Combination of an InGaN blue LED and full down-converted phosphor-converted LEDs," Optics Express 18, 11063-11072 (2010).
  12. J. H. Oh, J. R. Oh, H. K. Park, Y. G. Sung, Y. R. Do, "Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs," Opt. Express 20, A1-A12 (2012).
  13. "Osram Opto unveils brilliant-mix LED mixing concept," LEDs Mag. (2011).
  14. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, V. I. Klimov, "Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well," Nature 429, 642-646 (2004).
  15. M. J. Bowers, IIJ. R. McBride, S. J. Rosenthal, "White-light emission from magic-sized cadmium selenide nanocrystals," J. Amer. Chem. Soc. 127, 15378-15379 (2005).
  16. S. Nizamoglu, T. Ozel, E. Sari, H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18, 065709 (2007).
  17. A. L. Rogach, N. Gaponik, J. M. Lupton, C. Bertoni, D. E. Gallardo, S. Dunn, N. L. Pira, M. Paderi, P. Repetto, S. G. Romanov, C. O'Dwyer, C. M. Sotomayor Torres, A. Eychmuller, "Light-emitting diodes with semiconductor nanocrystals," Angew. Chem. Int. Ed. 47, 6538-6549 (2008).
  18. D. V. Talapin, J. S. Lee, M. V. Kovalenko, E. V. Shevchenko, "Prospects of colloidal nanocrystals for electronic and optoelectronic applications," Chem. Rev. 110, 389-458 (2010).
  19. W. H. Guo, J. J. Li, Y. A. Wang, X. G. Peng, "Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: Superior chemical, photochemical and thermal stability," J. Amer. Chem. Soc. 125, 3901-3909 (2003).
  20. X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, "Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility," J. Amer. Chem. Soc. 119, 7019-7029 (1997).
  21. J. Y. Tsao, M. E. Coltrin, M. H. Crawford, J. A. Simmons, "Solid-state lighting: An integrated human factors, technology, and economic perspective," Proc. IEEE 98, 1162-1179 (2010).
  22. A. Zukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, R. Gaska, "Optimization of multichip white solid-state lighting source with four or more LEDs," Proc. SPIE (2001) pp. 148-155.
  23. P. C. Hung, J. Y. Tsao, "Maximum white luminous efficacy of radiation versus color rendering index and color temperature: Exact results and a useful analytic expression," J. Display Technol. 9, (2013).
  24. M. L. Steigerwald, L. E. Brus, "Semiconductor crystallites: A class of large molecules," Acc. Chem. Res. 23, 183-188 (1990).
  25. A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science 271, 933-937 (1996).
  26. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites," J. Phys. Chem. B101, 9463-9475 (1997).
  27. Y. Ohno, "Color rendering and luminous efficacy of white LED spectra," Proc. SPIE—Int. Soc. Opt. Eng. (2004) pp. 88-98.
  28. W. Davis, Y. Ohno, "Color quality scale," Opt. Eng. 49, 033602 (2010).
  29. S. A. Empedocles, M. G. Bawendi, "Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots," Science 278, 2116 (1997).
  30. D. F. Kelley, S. K. Lyo, .
  31. K. Becker, J. M. Lupton, J. Muller, A. L. Rogach, D. V. Talapin, H. Weller, J. Feldmann, "Electrical control of Forster energy transfer," Nat. Mater. 5, 777 (2006).
  32. D. A. B. Miller, D. S. Chemla, S. Schmittrink, "Electroabsorption of highly confined systems—Theory of the quantum-confined Franz–Keldysh effect in semiconductor quantum wires and dots," Appl. Phys. Lett. 52, 2154-2156 (1988).
  33. A. I. Ekinov, A. I. L. Efros, T. V. Shubina, A. P. Skvortsov, "Quantum-size stark effect in semiconductor microcrystals," J. Lumines. 46, 97-100 (1990).
  34. L. I. Gurinovich, A. A. Lyutich, A. P. Stupak, M. V. Artem'ev, S. V. Gaponenko, "Effect of an electric field on photoluminescence of cadmium selenide nanocrystals," J. Appl. Spectrosc. 77, 120-125 (2010).
  35. L. I. Gurinovich, A. A. Lutich, A. P. Stupak, S. Y. Prislopsky, E. K. Rusakov, M. V. Artemyev, S. V. Gaponenko, H. V. Demir, "Luminescence in quantum-confined cadmium selenide nanocrystals and nanorods in external electric fields," Semiconductors 43, 1008-1016 (2009).
  36. V. L. Colvin, K. L. Cunningham, A. P. Alivisatos, "Electric field modulation studies of optical absorption in CdSe nanocrystals: Dipolar character of the excited state," J. Chem. Phys. 101, 7122-7138 (1994).
  37. J. S. Kamal, R. Gomes, Z. Hens, M. Karvar, K. Neyts, S. Compernolle, F. Vanhaecke, "Direct determination of absorption anisotropy in colloidal quantum rods," Phys. Rev. B 85, 035126 (2012).
  38. L. C. T. Shoute, D. F. Kelley, "Spatial organization of GaSe quantum dots: Organic/semiconductor liquid crystals," J. Phys. Chem. C111, 10233 (2007).
  39. Y. C. Jun, K. C. Y. Huang, M. L. Brongersma, "Plasmonic beaming and active controlover fluorescent emission," Nature Commun. 2, 283 (2011).
  40. M. A. Haase, J. Xie, T. A. Ballen, J. Zhang, B. Hao, Z. H. Yang, T. J. Miller, X. Sun, T. L. Smith, C. A. Leatherdale, "II-VI semiconductor color converters for efficient green, yellow, and red light emitting diodes," Appl. Phys. Lett. 96, 231116 (2010).
  41. W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited