OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 6 — Jun. 1, 2013
  • pp: 427–432

Ultra-High Thermal-Stable Glass Phosphor Layer for Phosphor-Converted White Light-Emitting Diodes

Chun-Chin Tsai, Wei-Chih Cheng, Jin-Kai Chang, Li-Yin Chen, Ji-Hung Chen, Yi-Cheng Hsu, and Wood-Hi Cheng

Journal of Display Technology, Vol. 9, Issue 6, pp. 427-432 (2013)


View Full Text Article

Acrobat PDF (1126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A glass phosphor layer with ultra-high thermal stability appropriate for phosphor-converted white light-emitting diodes (PC-WLEDs) is demonstrated. The results showed PC-WLEDs utilizing the high thermal stable glass phosphor maintained good thermal stability in lumen, chromaticity, and transmittance characteristics under the thermal aging condition up to 350 °C. This is a considerable high operating temperature for a phosphor layer in the PC-WLEDs. The lumen degradation, chromaticity shift, and transmittance loss in the glass-based PC-WLEDs under thermal aging at 150 °C, 250 °C, 350 °C, and 450 °C are also presented and compared with those of silicone-based PC-WLEDs under thermal aging at 150 °Cand 250 °C. The result clearly demonstrated that the glass-based PC-WLEDs exhibited better thermal stability in lumen degradation, chromaticity shift, and transmittance loss than the silicone-based PC-WLEDs. The advantages of glass encapsulation in high-temperature operation of the PC-WLEDs could be explained that the glass transition temperature of the glass phosphor (567 °C) was much higher than it of silicone (150 °C). The newly developed ultra-high thermal-stable glass is essentially critical to the application of LED modules in the area where the high-power, high-temperature and absolute reliability are required for use in the next-generation solid-state lighting.

© 2013 IEEE

Citation
Chun-Chin Tsai, Wei-Chih Cheng, Jin-Kai Chang, Li-Yin Chen, Ji-Hung Chen, Yi-Cheng Hsu, and Wood-Hi Cheng, "Ultra-High Thermal-Stable Glass Phosphor Layer for Phosphor-Converted White Light-Emitting Diodes," J. Display Technol. 9, 427-432 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-6-427


Sort:  Year  |  Journal  |  Reset

References

  1. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express 19, A991-A1007 (2011).
  2. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semicond. Sci. Technol. 27, 1-14 (2012).
  3. G. Liu, H. Zhao, J. H. Park, L. J. Mawst, N. Tansu, "Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography," Nanoscale Res. Lett. 6, 1-10 (2011).
  4. J. Zhang, N. Tans, "Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes," J. Appl. Phys. 110, 1-5 (2011).
  5. P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, "444.9 nm semipolar (112) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer," Appl. Phys. Lett. 100, 1-3 (2012).
  6. Y. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, N. Tansu, "Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode," IEEE J. Sel. Topics Quantum Electron. 15, 1066-1072 (2009).
  7. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, "Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios," IEEE Photon. J. 3, 489-499 (2011).
  8. E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, "Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes," Appl. Phys. Lett. 98, 1-3 (2011).
  9. H. Zhao, J. Zhang, G. Liu, N. Tansu, "Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes," Appl. Phys. Lett. 98, 1-3 (2011).
  10. J. Zhang, H. Zhao, N. Tansu, "Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers," Appl. Phys. Lett. 97, 1-3 (2010).
  11. J. Zhang, H. Zhao, N. Tansu, "Large optical gain AlGaN–Delta–GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes," Appl. Phys. Lett. 98, 1-3 (2011).
  12. Y. Taniyasu, M. Kasu, "Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices," Appl. Phys. Lett. 99, 1-3 (2011).
  13. E. F. Pecora, W. Zhang, A. Y. Nikiforov, L. Zhou, D. J. Smith, "Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations," Appl. Phys. Lett. 100, 1-3 (2012).
  14. G. Liu, J. Zhang, X. H. Li, G. S. Huang, T. Paskova, K. R. Evans, H. Zhao, N. Tansu, "Metalorganic vapor phase epitaxy and characterizations of nearly-lattice-matched AlInN alloys on GaN/sapphire templates and free-standing GaN substrates," J. Cryst. Growth 340, 66-73 (2012).
  15. S. K. K. Shaat, H. C. Swart, O. M. Ntwaeaborwa, "Synthesis and characterization of white light emitting CaxSr 1-xAl2O4:Tb3+, Eu3+ phosphor for solid state lighting," Opt. Mater. Express 7, 962-968 (2012).
  16. H. C. Kuo, C. W. Hung, H. C. Chen, K. J. Chen, C. H. Wang, C. W. Sher, C. C. Yeh, C. C. Lin, C. H. Chen, Y. J. Cheng, "Patterned structure of remote phosphor for phosphor-converted white LEDs," Opt. Express 19, A930-A936 (2011).
  17. S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. Hintzen, "Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting," J. Appl. Phys. 101, 1-5 (2012).
  18. Y. C. Hsu, Y. K. Lin, M. H. Chen, C. C. Tsai, J. H. Kuang, S. B. Huang, H. L. Hu, Y. I. Su, W. H. Cheng, "Failure mechanisms associated with lens shape of high-power LED modules in aging test," IEEE Trans. Electron Devices 55, 689-694 (2008).
  19. C. C. Tsai, M. H. Chen, Y. C. Huang, Y. C. Hsu, Y. T. Lo, Y. J. Lin, J. H. Kuang, S. B. Huang, H. L. Hu, Y. Su, W. H. Cheng, "Decay mechanisms of radiation pattern and optical spectrum of high-power LED modules in aging test," IEEE J. Sel. Topics Quantum Electron. 15, 1156-1162 (2009).
  20. J. Wang, C. C. Tsai, W. C. Cheng, M. h. Chen, C. H. Chung, W. H. Cheng, "High thermal stability of phosphor-converted white-light-emitting diodes employing Ce:YAG doped glass," IEEE J. Sel. Topics Quantum Electron. 17, 741-746 (2011).
  21. T. Yanagisawa, T. Kojima, "Long-term accelerated current operation of white light-emitting diodes," J. Luminesc. 114, 39-42 (2005).
  22. Lambda Res. Corp.LittletonMAUSATrace Pro 3.2.2; Trace Pro User Guide (1995).
  23. J. P. Holman, Heat Transfer (Mc Graw-Hill, 2000).
  24. W. H. Cheng, C. C. Tsai, J. Wang, "Lumen degradation and chromaticity shift in glass and silicone based high-power phosphor–converted white-emitting diodes under thermal tests," Proc. SPIE (2011).
  25. J. Wang, C. C. Tsai, J. S. Liou, W. C. Cheng, S. Y. Huang, G. H. Chang, W. H. Cheng, "Mean-time-to-failure evaluations of encapsulation materials for LED package in accelerated thermal tests," Microelectron. Rel. 52, 813-817 (2012).
  26. J. S. Liou, C. C. Tsai, W. C. Cheng, S. Y. Huang, G. H. Cheng, J. K. Chang, J. Wang, W. H. Cheng, "MTTF evaluations of encapsulation materials for LED package in accelerated thermal tests," Proc. OECC (2011) pp. 522-523.
  27. C. C. Tsai, J. Wang, M. H. Chen, Y. C. Hsu, Y. J. Lin, C. W. Lee, S. B. Huang, H. L. Hu, W. H. Cheng, "Investigation of Ce:YAG doping effect on thermal aging for high-power phosphor-converted white-light-emitting diodes," IEEE Trans. Device Mater. Rel. 9, (2009).
  28. C. C. Tsai, C. H. Chung, J. Wang, W. C. Cheng, M. H. Chen, J. S. Liou, J. K. Chang, Y. C. Hsu, S. C. Huang, C. W. Lee, H. L. Hu, S. B. Huang, J. H. Kuang, W. H. Cheng, "High thermal stability of high-power phosphor based white-light-emitting diodes employing Ce:YAG-doped glass," ECTC (2010) pp. 700-703.
  29. W. C. Cheng, S. Y. Huang, C. C. Tsai, J. S. Liou, J. H. Chang, J. Wang, W. H. Cheng, "The efficacy study of Ce:YAG doped low-temperature glass for white LED modules," Proc. OECC (2011) pp. 490-491.
  30. C. C. Tsai, J. S. Liou, W. C. Cheng, C. H. Chung, M. H. Chen, J. Wang, W. H. Cheng, "High humidity resistance of high-power white-light-emitting diode modules employing Ce:YAG doped glass," ECTC (2011) pp. 1626-1630.
  31. S. Baccaro, A. Cecilia, E. Mihokova, M. Nikl, K. Nejezchleb, K. Blazek, "Influence of Si-codoping on YAG:Ce scintillation characteristics," IEEE Trans. Nucl. Sci. 52, 1105-1108 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited