OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 6 — Jun. 1, 2013
  • pp: 490–496

Efficient Single-Layer White Light-Emitting Devices Based on Silole-Containing Polymers

Zhitian Liu, Jing Liu, Ping Cai, and Junwu Chen

Journal of Display Technology, Vol. 9, Issue 6, pp. 490-496 (2013)


View Full Text Article

Acrobat PDF (537 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Efficient white-light-emitting polymers were developed through the incorporation of narrow-bandgap green-emitting and red-emitting siloles moieties into the blue-emitting fluorene and carbazole copolymers backbone. By carefully controlling the concentrations of the green- and red-emitting species in the resulting copolymers, a white-light emission was achieved due to the simultaneous emission from all three colors. EL devices based on the copolymers exhibited luminance efficiencies of 4.87 cd/A with color coordinates of (0.30, 0.31) that was very close to the ideal CIE chromaticity coordinates for pure white light of (0.33, 0.33). After thermal treatment under 160 °C, the devices showed the best luminous properties with external quantum yield of 3.39%, LELmax of 6.78 cd/A and color coordinate of (0.29, 0.30). Furthermore, the color coordinates remained almost unchanged over the range of operating potentials. The main operating process involve in the white electroluminescent process can be attributed to the direct charge trapping on the narrow band gap units and partial energy transfer from the blue-emitting segments to the green- and red-emitting siloles moieties.

© 2013 IEEE

Citation
Zhitian Liu, Jing Liu, Ping Cai, and Junwu Chen, "Efficient Single-Layer White Light-Emitting Devices Based on Silole-Containing Polymers," J. Display Technol. 9, 490-496 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-6-490


Sort:  Year  |  Journal  |  Reset

References

  1. B. Y. Hsieh, Y. J. Chen, "Polyfluorenes minimally doped with 1,4-bis(2-thienyl-2-cyanovinyl)benzene chromophore: Their synthesis, characterization, and application to white-light-emitting material," J. Polym. Sci. A, Polym. Chem. 46, 3703-3713 (2008).
  2. B. W. D'Andrade, M. E. Thompson, S. R. Forrest, "Controlling exciton diffusionin multilayer white phosphorescent organic light emitting devices," Adv. Mater. 14, 147-151 (2002).
  3. Z. Y. Xie, J. S. Huang, C. N. Li, Y. Wang, Y. Q. Li, J. C. Shen, "White light emission induced by confinement in organic multiheterostructures," Appl. Phys. Lett. 74, 641-643 (1999).
  4. S. Tasch, E. J. W. List, O. Ekstrom, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, K. Mullen, "Efficient white light-emitting diodes realized with new processable blends of conjugated polymers," Appl. Phys. Lett. 71, 2883-2885 (1997).
  5. M. Strukelj, R. H. Jordan, A. Dodabalapur, "Organic multilayer white light emitting diodes," J. Amer. Chem. Soc. 118, 1213-1214 (1996).
  6. H. Kanno, Y. Sun, S. R. Forrest, "High-efficiency top emission white-light-emitting organic electrophosphorescent devices," Appl. Phys. Lett. 86, 263502-263504 (2005).
  7. B. W. D'Andrade, R. J. Holmes, S. R. Forrest, "Efficient organic electrophosphorescent white light-emitting device with a triple doped emissive layer," Adv. Mater. 16, 624-628 (2004).
  8. M. Mazzeo, D. Pisignano, F. Della Sala, J. Thompson, R. I. R. Blyth, G. Gigli, R. Cingolani, G. Sotgiu, G. Barbarella, "Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules," Appl. Phys. Lett. 82, 334-336 (2003).
  9. B. W. D'Andrade, J. Brooks, V. Adamovich, M. E. Thompson, S. R. Forrest, "White light emission using triplet excimers in electrophosphorescent organic light-emitting devices," Adv. Mater. 14, 1032-1036 (2002).
  10. M. J. Park, J. Kwak, J. Lee, I. H. Jung, H. Kong, C. Lee, D. H. Hwang, H. K. Shim, "Single chain white-emitting polyfluorene copolymers containing iridium complex coordinated on the main chain," Macromolecules 43, 1379-1386 (2010).
  11. Y. Liu, M. Nishiura, Y. Wang, Z. Hou, "π-conjugated aromatic enynes as a single emitting component for white electroluminescence," J. Amer. Chem. Soc. 128, 5592-5593 (2006).
  12. K. Zhang, Z. Chen, C. Yang, Y. Tao, Y. Zou, J. Qin, Y. Cao, "Stable white electroluminescence from single fluorene-based copolymers: Using fluorenone as the green fluorophore and an iridium complex as the red phosphor on the mian chain," J. Mater. Chem. 18, 291-298 (2008).
  13. Y. Xu, R. Guan, J. Jiang, W. Yang, H. Zhen, J. Peng, Y. Cao, "Molecular design of efficient white-light-emitting fluorene-based copolymers by mixing singlet and triplet emission," J. Polym. Sci. A, Polym. Chem. 46, 453-463 (2008).
  14. J. Huang, Y. H. Niu, W. Yang, Y. Q. Mo, M. Yuan, Y. Cao, "Novel electroluminescent polymers derived from carbazole and benzothiadiazole," Macromolecules 35, 6080-6082 (2002).
  15. N. S. Cho, D. H. Hwang, J. I. Lee, B. J. Jung, H. K. Shim, "Synthesis and color tuning of new fluorene-based copolymers," Macromolecules 35, 1224-1228 (2002).
  16. J. I. Lee, T. Zyung, R. D. Miller, Y. H. Kim, S. C. Jeoung, D. Kim, "Photoluminescence study on exciton migration and trapping in a copolymer based on poly(fluorene)," J. Mater. Chem. 10, 1547-1550 (2000).
  17. G. Klarner, J. I. Lee, M. H. Davey, R. D. Miller, "Exciton migration and trapping in copolymers based on dialkylfluorenes," Adv. Mater. 11, 115-119 (1999).
  18. M. S. Liu, J. Luo, A. K.-Y. Jen, "Efficient green-light-emitting diodes from silole-containing copolymers," Chem. Mater. 15, 3496-3500 (2003).
  19. M. Hissler, P. W. Dyer, R. Reau, "Linear organic π-conjugated systems featuring the heavy group 14 and 15 elements," Coord. Chem. Rev. 244, 1-44 (2003).
  20. H. Murata, G. G. Malliaras, M. U. Y. Shen, Z. H. Kafafi, "Non-dispersive and air-stable electron transport in an amorphous organic semiconductor," Chem. Phys. Lett. 339, 161-166 (2001).
  21. S. Yamaguchi, K. Tamao, "Silole-containing σ- and π-conjugated compounds," J. Chem. Soc., Dalton Trans. 22, 3693-3702 (1998).
  22. K. Tamao, M. Uchida, T. Izumizawa, K. Furukawa, S. Yamaguchi, "Silole derivatives as efficient electron transporting materials," J. Amer. Chem. Soc. 118, 11974-11975 (1996).
  23. J. Ohshita, M. Nodono, H. Kai, T. Watanabe, A. Kunai, K. Komaguchi, M. Shiotani, A. Adachi, K. Okita, Y. Harima, K. Yamashita, M. Ishikawa, "Synthesis and optical, electrochemical, and electron-transporting properties of silicon-bridged bithiophenes," Organometallics 18, 1453-1459 (1999).
  24. Z. T. Liu, L. Wang, J. W. Chen, F. Wang, X. Y. Ouyang, Y. Cao, "Synthesis and optoelectronic properties of silole-containing polyfluorenes with binary structures," J. Polym. Sci. A, Polym. Chem. 45, 756-767 (2007).
  25. Y. Lee, S. Sadki, B. Tsuie, J. R. Reynolds, "A new narrow band gap electroactive polymer: Poly[2,5-bis{2-(3,4-ethylenedioxy)thienyl}silole]," Chem. Mater. 13, 2234-2236 (2001).
  26. S. Yamaguchi, T. Goto, K. Tamao, "Silole-thiophene alternating copolymers with narrowband gap," Angew. Chem., Int. Ed. 39, 1695-1697 (2000).
  27. Z. T. Liu, J. H. Zou, J. W. Chen, L. Huang, J. B. Peng, Y. Cao, "Largely enhanced LED efficiency of carbazole-fluorene-silole copolymers by using TPBI hole blocking layer," Polymer 49, 1604-1610 (2008).
  28. J. H. Ahn, C. Wang, N. E. Widdowson, C. Pearson, M. R. Bryce, M. C. Petty, "Thermal annealing of blended-layer organic light-emitting diodes," J. Appl. Phys. 98, 054508-054514 (2005).
  29. J. Kim, J. Lee, C. W. Han, N. Y. Lee, I. J. Chung, "Effect of thermal annealing on the liftime of polymer light-emititng diodes," Appl. Phys. Lett. 82, 4238-4240 (2003).
  30. Y. H. Niu, Q. Hou, Y. Cao, "Thermal annealing below the glass transition temperature: A general way to increase performance od light-emitting diodes based on copolyfluorenes," Appl. Phys. Lett. 81, 634-636 (2002).
  31. J. Liu, T. F. Guo, Y. Yang, "Effect of thermal annealing on the performance of polymer light emititng diodes," J. Appl. Phys. 91, 1595-1600 (2002).
  32. C. Y. Lin, A. Garcia, P. Zalar, J. Z. Brzezinski, T. Q. Nguyen, "Effect of thermal annealing on polymer light-emitting diodes utilizing cationic conjugated polyelectrolyte as electron injection layers," J. Phys. Chem. C 114, 15786-15790 (2010).
  33. M. Y. Chang, H. B. Yen, C. Y. Hung, Y. F. Chen, S. C. Lin, W. Y. Huang, Y. K. Han, "Effect of solvent-assisted thermal treatment on the performance of polyfluorene-based polymer light emitting diodes," J. Electrochem. Soc. 157, 116-119 (2010).
  34. M. Ranger, D. Rondeau, M. Leclerc, "New well-defined poly(2,7-fluorene) derivatives: Photoluminescence and base doping," Macromolecules 30, 7686-7691 (1997).
  35. Z. Liu, J. Zou, J. Chen, Y. Liu, J. Peng, Y. Cao, "Highly efficient red light-emitting diodes based on silole-containing polycarbazole," Acta. Polymeric Sinica 9, 845-851 (2009).
  36. J. Kido, K. Nagai, "White light-emitting organic electroluminescent devices," Oyo Buturi 63, 1026-1029 (1994).
  37. A. Greiner, "Design and synthesis of polymers for light-emitting diodes," Polym. Adv. Technol. 9, 371-389 (1998).
  38. H. Huang, Q. Fu, S. Zhuang, Y. Liu, L. Wang, J. Chen, D. Ma, C. Yang, "Novel deep blue OLED emitters with 1,3,5-tri(anthracen-10-yl)benzene-centered starburst oligofluorenes," J. Phys. Chem. C 115, 4872-4878 (2011).
  39. T. W. Lee, O. O. Park, "The effect of different heat treatments on the luminescence efficiency of polymer light-emitting diodes," Adv. Mater. 12, 801-804 (2000).
  40. B. D. Chin, L. Duan, M. Kim, S. T. Lee, H. K. Chung, "Effects of cathode thickness and thermal treatment on the design of balanced blue light-emitting polymer device," Appl. Phys. Lett. 85, 4496-4498 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited