OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 7 — Jul. 1, 2013
  • pp: 536–544

Nano-Crystalline Silicon-Based Bottom Gate Thin-Film Transistor Grown by LTPECVD With Hydrogen-Free He Diluted ${{SiH}} _{4}$

Chih-Hsien Cheng, Po-Sheng Wang, Chih-I Wu, and Gong-Ru Lin

Journal of Display Technology, Vol. 9, Issue 7, pp. 536-544 (2013)


View Full Text Article

Acrobat PDF (1576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The bottom-gate nc-Si based thin-film-transistors (TFTs) grown by using the low-temperature plasma-enhanced chemical vapor deposition (LT-PECVD) system with He diluted ${{SiH}} _{4}$ are demonstrated. With the RF plasma power increasing from 20 to 100 W, the crystalline volume ratio of the nc-Si inside the a-Si:H film significantly increases from 12.5% to 32%, and its deposition rate is also enhanced from 9.5 to 14.5 nm/min. The faster deposition at higher plasma greatly suppresses the residual oxygen content in nc-Si film to 4% or less, which reduces the flat-band shifted voltage of the MOS diode by 2 volts. The increased crystalline volume with suppressed oxide in nc-Si films contribute to the enhanced Hall mobility and conductivity. The nc:Si TFT decreases its threshold voltage from 3.3 V to 2.7 V, and enlarges its field mobility from 0.3 to 1.3 ${{cm}}^{2} /{{V}} \mathchar"702D {{s}}$ . The defect density in the nc-Si TFTs further decrease by one order of magnitude to ${{7.5}}\times {{10}} ^{16}~{{cm}}^{-3}\mathchar"702D{{eV}} ^{-1}$ , which causes a shrinkage on the sub-threshold operation range to make easier the operation of the nc-Si TFTs entering into the above-threshold regime at lower voltage. The hydrogen-free He diluted ${{SiH}} _{4}$ growth has shown its compatibility with the conventional recipe for the high-mobility nc-Si TFT fabrication.

© 2013 IEEE

Citation
Chih-Hsien Cheng, Po-Sheng Wang, Chih-I Wu, and Gong-Ru Lin, "Nano-Crystalline Silicon-Based Bottom Gate Thin-Film Transistor Grown by LTPECVD With Hydrogen-Free He Diluted ${{SiH}} _{4}$ ," J. Display Technol. 9, 536-544 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-7-536


Sort:  Year  |  Journal  |  Reset

References

  1. B. C. Easton, J. A. Chapman, O. F. Hill, M. J. Powell, "The plasma-enhanced deposition of hydrogenated amorphous silicon," Vacuum 34, 371-376 (1984).
  2. P. Roca i Cabarrocas, N. Layadi, B. Drevillon, I. Solomon, "Microcrystalline silicon growth by the layer-by-layer technique: Long term evolution and nucleation mechanisms," J. Non-Cryst. Solids 198, 2871-874 (1996).
  3. A. Z. Kattamis, R. J. Holmes, I. C. Cheng, K. Long, J. C. Sturm, S. R. Forrest, S. Wagner, "High mobility nanocrystalline silicon transistors on clear plastic substrates," IEEE Electron Device Lett. 27, 49-51 (2006).
  4. C. H. Lee, D. Striakhilev, A. Nathan, "Stability of nc-Si:H TFTs with silicon nitride gate dielectric," IEEE Trans. Electron Devices 54, 45-51 (2007).
  5. K. Y. Chan, A. Gordijn, H. Stiebig, D. Knipp, "Microcrystalline-silicon transistors and CMOS inverters fabricated near the transition to amorphous-growth regime," IEEE Trans. Electron Devices 56, 1924-1929 (2009).
  6. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MuKck, B. Rech, H. Wagner, "Intrinsic microcrystalline silicon: A new material for photovoltaics," Sol. Energy Mater. Sol. Cells 62, 97-108 (2000).
  7. F. Finger, P. Hapke, M. Luysberg, R. Carius, H. Wagner, M. Scheib, "Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge," Appl. Phys. Lett. 65, 2588-2590 (1994).
  8. D. Das, "Control of hydrogenation and modulation of the structural network in Si:H by interrupted growth and H-plasma treatment," Phys. Rev. B 51, 10729-10736 (1995).
  9. A. Matsuda, "Formation kinetics and control of microcrystalline in $\mu {\rm c}$ -Si:H from glow discharge plasma," J. Non-Crystl. Solids 59–60, 2767-774 (1983).
  10. G.-R. Lin, C.-J. Lin, H.-C. Kuo, "Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array," Appl. Phys. Lett. 91, 093122 (2007).
  11. A. Parashar, S. Kumar, J. Gope, C. M. S. Rauthan, P. N. Dixit, S. A. Hashmi, "Influence of argon dilution on growth and properties of hydrogenated nanocrystalline silicon films," Sol. Energy Mater. Sol. Cells 94, 892-899 (2010).
  12. G.-R. Lin, Y.-H. Pai, C.-T. Lin, "Microwatt MOSLED using ${{SiO}}_{x}$ with buried Si nanocrystals on Si nano-pillar array," J. Lightw. Technol. 26, 1486-1491 (2008).
  13. K. Bhattacharya, D. Das, "Nanocrystalline silicon films prepared from silane plasma in RF-PECVD, using helium dilution without hydrogen: Structural and optical characterization," Nanotechnol. 18, 415704 (2007).
  14. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner, "Intrinsic microcrystalline silicon: A new material for photovoltaics," Sol. Energy Mater. Sol. Cells 62, 97-108 (2000).
  15. G.-R. Lin, C.-J. Lin, C.-K. Lin, "Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids," Opt. Express 15, 2555-2563 (2007).
  16. K. Y. Chan, E. Bunte, H. Stiebig, D. Knipp, "Influence of low temperature thermal annealing on the performance of microcrystalline silicon thin-film transistors," J. Appl. Phys. 101, 074503 (2007).
  17. G.-R. Lin, Y.-H. Pai, C.-T. Lin, "Microwatt MOSLED using ${{SiO}}_{x}$ with buried Si nanocrystals on Si nano-pillar array," J. Lightw. Technol. 26, 1486-1491 (2008).
  18. G.-R. Lin, C.-J. Lin, C.-K. Lin, "Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids," Opt. Express 15, 2555-2563 (2007).
  19. Y.-A. Dai, H.-C. Chang, K.-Y. Lai, C.-A. Lin, R.-J. Chung, G.-R. Lin, J.-H. He, "Subwavelength Si nanowire arrays for self-cleaning antireflection coatings," J. Mater. Chem. 20, 10924-10930 (2010).
  20. G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich ${{SiO}}_{2}$ ," J. Appl. Phys. 97, 094306 (2005).
  21. I. K. Kim, J. H. Lim, G. Y. Yeom, "Characteristics of hydrogenated silicon thin film deposited by RF-PECVD using He- ${{SiH}}_{4}$ mixture," Vacuum 86, 82-86 (2011).
  22. A. M. Funde, N. A. Bakr, D. K. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. R. Jadkar, "Influence of hydrogen dilution on structural, electrical and optical properties of hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared by plasma enhanced chemical vapour deposition (PE-CVD)," Sol. Energy Mater. Sol. Cells 92, 1217-1223 (2008).
  23. V. Thaiyalnayaki, M. F. Cerqueira, J. A. Ferreira, J. Tovar, "The influence of electric field on the microstructure of nc-Si:H films produced by RF magnetron sputtering," Vacuum 82, 1433-1436 (2011).
  24. K.-Y. Chan, E. Bunte, H. Stiebig, D. Knipp, "Influence of contact effect on the performance of microcrystalline silicon thin-film transistors," Appl. Phys. Lett. 89, 203509 (2006).
  25. S. Hazra, A. R. Middya, C. Longeaud, S. Ray, "Features of hydrogenated amorphous silicon films developed under an unexplored region of parameter space of radio-frequency plasma-enhanced chemical vapor deposition," Appl. Phys. Lett. 76, 2340-2342 (2000).
  26. C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, G.-R. Lin, "Si quantum dots doped Si-rich ${{Si}}_{x}{{C}}_{1-x}$ lighting emitting diodes," IEEE Photon. J. 4, 1762-1775 (2012).
  27. G.-R. Lin, T.-C. Lo, L.-H. Tsai, Y.-H. Pai, C.-H. Cheng, C.-I. Wu, P.-S. Wang, "Finite silicon atom diffusion induced size limitation on self-assembled silicon quantum dots in silicon-rich silicon carbide," J. Electrochem. Soc. 159, K35-K41 (2011).
  28. B.-H. Lai, C.-H. Cheng, Y.-H. Pai, G.-R. Lin, "Plasma power controlled deposition of ${{SiO}}_{x}$ with manipulated Si Quantum Dot size for photoluminescent wavelength tailoring," Opt. Express 18, 4449-4456 (2010).
  29. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge Univ. Press, 1991).
  30. L. Xu, Z. P. Li, C. Wen, W. Z. Shen, "Bonded hydrogen in nanocrystalline silicon photovoltaic materials: Impact on structure and defect density," J. Appl. Phys. 110, 064315 (2011).
  31. G.-R. Lin, C.-J. Lin, "Improved blue-green electroluminescence of metal-oxide-semiconductor diode fabricated on multirecipe Si-implanted and annealed SiO2/Si substrate," J. Appl. Phys. 95, 848-8486 (2004).
  32. F. Finger, R. Carius, T. Dylla, S. Klein, S. Okur, M. Günes, "Stability of microcrystalline silicon for thin fllm solar cell applications," Proc. IEE Circuits Devices Syst. 150, 300-308 (2003).
  33. B.-H. Lai, C.-H. Cheng, G.-R. Lin, "Improved emission efficiency of mutli-color metal-oxide-semiconductor light emitting diodes made on Si-rich ${{SiO}}_{x}$ with smaller quantum dots," IEEE J. Quantum Electron. 47, 698-704 (2011).
  34. C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, G.-R. Lin, "Electrically injected carrier trapping and recombination in Si-QDs embedded silicon-rich silicon nitride films," Appl. Phys. Lett. 99, 243501 (2012).
  35. G.-R. Lin, C.-J. Lin, K.-C. Yu, "Time-resolved photoluminescence and capacitance-voltage analysis of the neutral vacancy defect in silicon implanted ${{SiO}}_{2}$ on silicon substrate," J. Appl. Phys. 96, 3025-3027 (2004).
  36. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981) pp. 441.
  37. T. Bronger, R. Carius, "Carrier mobilities in microstalline silicon films," Thin Solid Films 515, 7486-7489 (2007).
  38. D. W. Freve, Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems (Prentice Hall, 1998) pp. 287.
  39. K. S. Girotra, Y.-M. Choi, B.-J. Kim, Y.-R. Song, B. Choi, S.-H. Yang, S. Kim, S. Lim, "PECVD-based nanocrystalline-silicon TFT backplanes for large-sized AMOLED displays," J. Soc. Inf. Displays 15, 113-118 (2007).
  40. M. Oudwan, Y. Djeridane, A. Abramov, B. Aventurier, P. R. i. Cabarrocas, F. Templier, "Influence of process steps on the performance of microcrystalline silicon thin film transistors," Thin Solid Films 515, 7662-7666 (2007).
  41. M. J. Powell, "The physics of amorphous-silicon thin-film transistors," IEEE Trans. Electron Devices 36, 2753-2763 (1989).
  42. M. J. Powell, C. van Berkel, I. D. French, D. H. Nicholls, "Bias dependence of instability mechanisms in amorphous silicon thin-film transistors," Appl. Phys. Lett. 51, 1242-1244 (1987).
  43. M. J. Powell, C. van Berkel, J. R. Hughes, "Time and temperature dependence of instability mechanisms in amorphous silicon transistors," Appl. Phys. Lett. 54, 1323-1325 (1989).
  44. S. Kasouit, P. Roca i Cabarrocas, R. Vanderhaghen, Y. Bonnassieux, M. Elyaakoubi, I. D. French, J. Rocha, B. Vitoux, "Effect of deposition conditions and dielectric plasma treatments on the electrical properties of microcrystalline silicon TFTs," Thin Solid Films 427, 67-70 (2003).
  45. J. Z. Chen, I.-C. Cheng, "Abnormal temperature-dependent stability of on-plastic a-Si:H thin film transistors fabricated at 150 $^{\circ}{{C}}$ ," J. Appl. Phys. 104, 044508 (2008).
  46. M. Hara, "High mobility bottom gate nanocrystalline-Si thin-film transistors," Thin Solid Films 519, 3922-3294 (2011).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited