OSA's Digital Library

Journal of Display Technology

Journal of Display Technology


  • Vol. 9, Iss. 7 — Jul. 1, 2013
  • pp: 572–576

An AC Driving Pixel Circuit Compensating for TFTs Threshold-Voltage Shift and OLED Degradation for AMOLED

Wei-Jing Wu, Lei Zhou, Miao Xu, Li-Rong Zhang, Ruo-He Yao, and Jun-Biao Peng

Journal of Display Technology, Vol. 9, Issue 7, pp. 572-576 (2013)

View Full Text Article

Acrobat PDF (933 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


This paper presents an ac driving pixel circuit for active-matrix organic light-emitting diode (AMOLED) displays, which is composed of one driving thin-film transistor (TFT), three switching TFTs and one capacitor. The proposed pixel circuit can not only make OLED work at the ac driving mode, but also effectively compensate for the threshold-voltage shift of the driving TFT and the degradation of OLED. Simulation results show that the nonuniformity of the proposed pixel circuit is significantly reduced ( $< {{10}}\%$ ) with an average value of 4.2% compared with that of the conventional 2T1C pixel circuit, and thus, the brightness uniformity of AMOLED displays can be enhanced. Moreover, a high contrast ratio can be achieved by the proposed pixel circuit due to no light emitting except for the emission period, as well as a relatively high aperture ratio due to a small number of components.

© 2013 IEEE

Wei-Jing Wu, Lei Zhou, Miao Xu, Li-Rong Zhang, Ruo-He Yao, and Jun-Biao Peng, "An AC Driving Pixel Circuit Compensating for TFTs Threshold-Voltage Shift and OLED Degradation for AMOLED," J. Display Technol. 9, 572-576 (2013)

Sort:  Year  |  Journal  |  Reset


  1. R. M. A. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, J. C. Sturm, "The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays," IEDM Tech. Dig. (1998) pp. 875-878.
  2. A. Nathan, G. R. Chaji, S. J. Ashtiani, "Driving schemes for a-Si and LTPS AMOLED displays," J. Display Technol. 1, 267-277 (2005).
  3. A. Nathan, A. Kumar, K. Sakariya, P. Servati, K. S. Karim, D. Striakhilev, "Amorphous silicon back-plane electronics for OLED displays," IEEE J. Sel. Topics Quantum Electron. 4, 58-68 (1998).
  4. Y. He, R. Hattori, J. Kanicki, "Improved a-Si: H TFT pixel electrode circuits for active-matrix organic light emitting displays," IEEE Trans. Electron Devices 48, 1322-1325 (2001).
  5. M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, "Polysilicon TFT technology for active matrix OLED displays," IEEE Trans. Electron Devices 48, 845-851 (2001).
  6. Z. Meng, M. Wong, "Active-matrix organic light-emitting diode displays realized using metal-induced unilaterally crystallized polycrystalline silicon thin-film transistors," IEEE Trans. Electron Devices 49, 991-996 (2002).
  7. P. E. Burrow, S. R. Forrest, T. X. Zhou, L. Michalski, "Operating lifetime of phosphorescent organic light emitting devices," Appl. Phys. Lett. 76, 2493-2495 (2000).
  8. Z. D. Popovic, H. Aziz, "Reliability and degradation of small molecule-based organic light-emitting devices (OLEDs)," IEEE J. Select. Topics in Quantum Electronics 8, 362-371 (2002).
  9. S. A. Van Slyke, C. H. Chen, C. W. Tang, "Organic electroluminescent devices with improved stability," Appl. Phys. Lett. 69, 2160-2162 (1996).
  10. D. Zou, M. Yahiro, T. Tsutsui, "Improvement of current-voltage characteristics in organic light emitting diodes by application of reversed-bias voltage," Jpn. J. Appl. Phys. 37, L1404-L1408 (1998).
  11. S. Ono, K. Miwa, Y. Maekawa, T. Tsujimura, " ${\rm V}_{\rm T}$ compensation circuit for AMOLED displays composed of two TFTs and one capacitor," IEEE Trans. Electron Devices 54, 462-467 (2007).
  12. H. Y. Lu, P. T. Liu, T. C. Chang, S. Chi, "Enhancement of brightness uniformity by a new voltage-modulated pixel design for AMOLED displays," IEEE Electron Device Lett. 27, 743-745 (2006).
  13. J. H. Lee, J. H. Kim, M. K. Han, "A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED," IEEE Electron Device Lett. 26, 897-899 (2005).
  14. W. J. Wu, L. Zhou, R. H. Yao, J. B. Peng, "A new voltage-programmed pixel circuit for enhancing the uniformity of AMOLED displays," IEEE Electron Device Lett. 32, 931-933 (2011).
  15. Y. C. Lin, H. P. D. Shieh, "Improvement of brightness uniformity by AC driving scheme for AMOLED display," IEEE Electron Device Lett. 25, 728-730 (2004).
  16. Y. Si, L. Lang, Y. Zhao, X. Chen, S. Liu, "Improvement of pixel electrode circuit for active-matrix OLED by application of reverse-biased voltage," IEEE Trans. Circuits and Syst.-II: Express Briefs 52, 856-859 (2005).
  17. H. J. In, O. K. Kwon, "External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays," IEEE Electron Device Lett. 30, 377-379 (2009).
  18. C. L. Lin, C. C. Hung, W. Y. Chang, K. W. Chou, C. Y. Chuang, "Novel a-Si:H AMOLED pixel circuit to ameliorate OLED luminance degradation by external detection," IEEE Electron Device Lett. 32, 1716-1718 (2011).
  19. G. R. Chaji, P. Servati, A. Nathan, "Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel," Electronics Lett. 41, 499-500 (2005).
  20. G. R. Chaji, A. Nathan, "A stable voltage-programmed pixel circuit for a-Si:H AMOLED displays," J. Display Technol. 2, 347-358 (2006).
  21. D. W. Park, C. K. Kang, Y. S. Park, B. Y. Chung, K. H. Chung, K. kim, B. H. Kim, S. S. Kim, "High-speed pixel circuits for large-sized 3-D AMOLED displays," J. SID 19, 329-334 (2011).
  22. C. L. Lin, C. C. Hung, W. Y. Chang, M. H. Cheng, P. Y. Kuo, Y. C. Chen, "Voltage driving scheme using three TFTs and one capacitor for active-matrix organic light-emitting diode pixel circuits," J. Display Technol. 8, 602-608 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited