OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 9 — Sep. 1, 2013
  • pp: 710–715

Solution-Processed Dual-Gate Polymer Field-Effect Transistors for Display Applications

Tae-Jun Ha, Prashant Sonar, and Ananth Dodabalapur

Journal of Display Technology, Vol. 9, Issue 9, pp. 710-715 (2013)


View Full Text Article

Acrobat PDF (619 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We describe the advantages of dual-gate thin-film transistors (TFTs) for display applications. We show that in TFTs with active semiconductor layers composed of diketopyrrolopyrrole-naphthalene copolymer, the on-current is increased, the off-current is reduced, and the sub-threshold swing is improved compared to single-gate devices. Charge transport measurements in steady-state and under non-quasi-static conditions reveal the reasons for this improved performance. We show that in dual-gate devices, a much smaller fraction of charge carriers move in slow trap states. We also compare the activation energies for charge transport in the top-gate and bottom-gate configurations.

© 2012 IEEE

Citation
Tae-Jun Ha, Prashant Sonar, and Ananth Dodabalapur, "Solution-Processed Dual-Gate Polymer Field-Effect Transistors for Display Applications," J. Display Technol. 9, 710-715 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-9-710


Sort:  Year  |  Journal  |  Reset

References

  1. T.-J. Ha, P. Sonar, A. Dodabalapur, "High mobility top-gate and dual-gate polymer thin-film transistors based on diketopyrrolopyrrole-naphthalene copolymer," Appl. Phys. Lett. 98, 253305 (2011).
  2. F. Maddalena, M. Spijkman, J. J. Brondijk, P. Fonthijn, F. Brouwer, J. C. Hummelen, D. M. de Leeuw, P. W. M. Blom, B. de Boer, "Device characteristics of polymer dual-gate field-effect transistors," Organic Electron. 9, 839-846 (2008).
  3. G. H. Gelinck, E. Van Veenendaal, R. Coehoorn, "Dual-gate organic thin-film transistors," Appl. Phys. Lett. 87, 073508 (2005).
  4. P. Servait, K. S. Karim, A. Nathan, "Static characteristics of a-Si:H dual gate TFTs," IEEE Trans. Electron Devices 50, 926-930 (2003).
  5. H. C. Tuan, M. J. Thompson, N. M. Johnson, R. A. Lujan, "Dual-gate a-Si:H thin film transistors," IEEE Electron Devices Lett. 3, 357-359 (1982).
  6. A. K. Tripathi, E. C. P. Smits, M. Loth, J. E. Anthony, G. H. Gelinck, "Charge transport in solution processable polycrystalline dual-gate organic field effect transistors," Appl. Phys. Lett. 98, 202106 (2011).
  7. T.-J. Ha, P. Sonar, A. Dodabalapur, "Charge carrier velocity distributions in high mobility polymer field-effect transistors," Appl. Phys. Lett. 100, 153302 (2012).
  8. L. Dunn, A. Dodabalapur, "Temperature dependent transient velocity and mobility studies in an organic field effect transistor," J. Appl. Phys. 107, 113714 (2010).
  9. D. Basu, L. Wang, L. Dunn, B. Yoo, S. Nadkarni, A. Dodabalapur, M. Heeney, I. McCulloch, "Direct measurement of carrier drift velocity and mobility in a polymer field-effect transistor," Appl. Phys. Lett. 89, 242104 (2006).
  10. P. Sonar, S. P. Singh, Y. Li, Z.-E. Ooi, T.-J. Ha, I. Wong, M. S. Soh, A. Dodabalapur, "High mobility organic thin film transistor and efficient photovoltaic devices using versatile donor-acceptor polymer semiconductor by molecular design," Energy Environ. Sci 4, 2288-2296 (2011).
  11. W. L. Kalb, B. Batlogg, "Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods," Phys. Rev. B 81, 035327 (2010).
  12. S. Chung, J. Jeong, D. Kim, Y. Park, C. Lee, Y. Hong, "Contact resistance of inkjet-printed silver source-drain electrodes in bottom-contact OTFTs," J. Display Technol. 8, 48-53 (2012).
  13. T.-J. Ha, D. Sparrowe, A. Dodabalapur, "Device architectures for improved amorphous polymer semiconductor thin-film transistors," Organic Electronics 12, 1846-1851 (2011).
  14. S. A. DiBenedetto, A. Facchetti, M. A. Ratner, T. J. Marks, Adv. Mater. 21, 1407-1433 (2009).
  15. J. Jang, "Displays develop a new flexibility," Materials Today 9, 46-52 (2006).
  16. Y. Wen, Y. Liu, "Recent progress in n-channel organic thin-film transistors," Adv. Mat. 22, 1331-1345 (2010).
  17. G. Horowitz, M. Mottaghi, P. Lang, F. Rodriguez, A. Yassar, "On the crucial role of the insulator-semiconductor interface in organic thin-film transistors," Proc. SPIE (2006) pp. 63360.
  18. R. J. Chesterfield, J. C. McKeen, C. R. Newman, C. D. Frisbie, P. C. Ewbank, K. R. Mann, L. L. Miller, "Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors," J. Appl. Phys. 95, 6396 (2004).
  19. G. Horowitz, "Organic field-effect transistors," Adv. Mater. 10, 365-377 (1998).
  20. D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, A. P. Ramirez, "Amorphouslike density of gap states in single-crystal pentacene," Phys. Rev. Lett. 93, 086802 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited