OSA's Digital Library

Journal of Display Technology

Journal of Display Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 9, Iss. 9 — Sep. 1, 2013
  • pp: 741–746

Impact of Underwater Laser Annealing on Polycrystalline Silicon Thin-Film Transistor for Inactivation of Electrical Defects at Super Low Temperature

Emi Machida, Masahiro Horita, Koji Yamasaki, Yasuaki Ishikawa, Yukiharu Uraoka, and Hiroshi Ikenoue

Journal of Display Technology, Vol. 9, Issue 9, pp. 741-746 (2013)


View Full Text Article

Acrobat PDF (1276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose underwater laser annealing (WLA) for the inactivation of electrical defects in polycrystalline silicon thin-film transistors (poly-Si TFTs) at super low-temperature. This technique can reduce the temperature of inactivation process drastically, and it requires only UV laser and deionized water. We performed WLA after the fabrication of top-gate type poly-Si TFTs. After WLA, the field-effect mobility of poly-Si TFTs increased from 52 to 72 cm $^{2}/{{V}}\cdot{{sec}}$ . The TFT surface was exposed to water vapor which was generated by laser irradiation, resulting that electrical defects were inactivated by active species in water vapor.

© 2013 IEEE

Citation
Emi Machida, Masahiro Horita, Koji Yamasaki, Yasuaki Ishikawa, Yukiharu Uraoka, and Hiroshi Ikenoue, "Impact of Underwater Laser Annealing on Polycrystalline Silicon Thin-Film Transistor for Inactivation of Electrical Defects at Super Low Temperature," J. Display Technol. 9, 741-746 (2013)
http://www.opticsinfobase.org/jdt/abstract.cfm?URI=jdt-9-9-741


Sort:  Year  |  Journal  |  Reset

References

  1. T. Sameshima, S. Usui, M. Sekiya, "XeCl excimer laser annealing used in the fabrication of poly-Si TFTs," IEEE Electron Device Lett. EDL-7, 276-278 (1986).
  2. S. Uchikoga, N. Ibaraki, "Low temperature poly-Si TFT-LCD by excimer laser anneal," Thin Solid Films 383, 19-24 (2001).
  3. S. J. Park, Y. M. Ku, E. H. Kim, J. Jang, K. H. Kim, C. O. Kim, "Selective crystallization of amorphous silicon thin film by a CW green laser," J. Non-Cryst. Solids. 352, 993-997 (2006).
  4. K. Yamasaki, E. Machida, M. Horita, Y. Ishikawa, Y. Uraoka, Proc. AM-FPD11 (2011) pp. 121.
  5. W.-J. Nam, H.-J. Lee, H.-S. Shin, S.-G. Park, M.-K. Han, "Low-voltage driven P-type polycrystalline thin-films transistor integrated gate driver circuits for low-cost chip on glass panel," Jpn. J. Appl. Phys. 45, 4389-4391 (2006).
  6. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  7. M. C. Lee, S. M. Han, S. H. Kang, M. Y. Shin, M. K. Han, "Poly-Si TFT fabricated at 150 $^{\circ}$ C using ICP-CVD and excimer laser annealing for plastic substrates," IEDM'03 Tech. Dig. (2003) pp. 8.7.1-8.7.4.
  8. Y. C. Wu, T. C. Chang, P. T. Liu, Y. C. Wu, C. W. Chou, C. H. Tu, J. C. Lou, C. Y. Chang, "Mobility enhancement of polycrystalline-Si thin-film transistors using nanowire channels by pattern-dopant metal-induced lateral crystallization," Appl. Phys. Lett. 87, 143504-143507 (2005).
  9. D. P. Gosain, T. Noguchi, S. Usui, "High mobility thin film transistors fabricated on a plastic substrates at a processing temperature of 110 $^{\circ}$ C," Jpn. J. Appl. Phys. 39, L179-L181 (2000).
  10. G. Kawachi, T. Aoyama, A. Mimura, N. Konishi, "Application of ion doping and excimer laser annealing to fabrication of low-temperature polycrystalline Si thin-film transistors," Jpn. J. Appl. Phys. 33, 2092-2099 (1994).
  11. D. M. Kim, D. S. Kim, J. S. Ro, "Dopant activation after ion shower doping for the fabrication of low-temperature poly-Si TFTs," Thin Solid Films 475, 342-347 (2005).
  12. H. Lin, C. Hung, W. Chen, Z. Lin, H. Hsu, T. Hunag, "Origin of hysteresis in current-voltage characteristics of polycrystalline silicon thin-film transistors," J. Appl. Phys. 105, 054502-054508 (2009).
  13. S. Inoue, M. Kimura, T. J. Shimoda, "Analysis and classification of degradation phenomena in polycrystalline-silicon thin films transistors fabricated by a low-temperature process using emission light microscopy," Jpn. Appl. Phys. 42, 1168-1172 (2003).
  14. M. Cao, T. Zhao, K. C. Saraswat, J. D. Plummer, "Study on hydrogenation of polycrystalline thin film transistors by ion implantation," IEEE Trans. Electron Devices. 42, 1134-1140 (1995).
  15. Y. Uraoka, M. Miyashita, Y. Sugawara, H. Yano, T. Hatayama, T. Fuyuki, T. Sameshima, "Improvement of reliability in low-temperature polycrystalline silicon thin-film transistors by water vapor annealing," Jpn. J. Appl. Phys. 45, 5657-5661 (2006).
  16. T. Sameshima, M. Satoh, K. Sakamoto, K. Ozaki, K. Saitoh, "Heat treatment of amorphous and polycrystalline silicon thin films with high-pressure H $_{2}$ O vapor," Jpn. J. Appl. Phys. 37, 4254-4257 (1998).
  17. T. Sameshima, M. Satoh, "Improvement of SiO $_{2}$ properties by heating treatment in high pressure H $_{2}$ O vapor," Jpn. J. Appl. Phys. 36, L687-L689 (1997).
  18. R. Martins, L. Raniero, L. Pereira, "Nanostructured silicon and its application to solar cells," Philosophical Magazine 89, 2699-2721 (2009).
  19. Y. Yogoro, A. Masuda, H. Matsumura, "Crystallization by excimer laser annealing for a-Si:H films with low hydrogen content prepared by Cat-CVD," Thin Solid Films 430, 296-299 (2003).
  20. Y. Uraoka, M. Miyashita, Y. Sugawara, H. Yano, T. Hatayama, T. Fuyuki, T. Sameshima, "Improvement of reliability in low-temperature polycrystalline silicon thin-films transistors by water vapor annealing," 45, 5657-5661 (2006).
  21. E. Machida, M. Horita, Y. Ishikawa, Y. Uraoka, T. Okuyama, H. Ikenoue, "Super low-temperature crystallization of polycrystalline silicon thin films by underwater laser annealing," Proc. 8th Int. Thin-Film Transistor Conf. (2012) pp. 29.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited