Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 18,
  • Issue 3,
  • pp. 409-
  • (2000)

New Full-Vectorial Numerically Efficient Propagation Algorithm Based on the Finite Element Method

Not Accessible

Your library or personal account may give you access

Abstract

A new full-vectorial beam propagation algorithm based on the versatile finite element method, in order to accurately characterize three-dimensional (3-D) optical guided-wave devices, is presented. The computationally efficient formulation is based on the two transverse components of the magnetic field without destroying the sparsity of the matrix equation. The robust perfectly matched layer (PML) boundary condition is incorporated into the formulation so as to effectively absorb the unwanted radiation out of the computational domain. The efficiency and precision of the proposed full-vectorial propagation approach is demonstrated through the analysis of single optical waveguide,directional couplers, and electrooptic modulator.

[IEEE ]

PDF Article
More Like This
Design of compact optical bends with a trench by use of finite-element and beam-propagation methods

Muttukrishnan Rajarajan, Salah S. A. Obayya, B. M. Azizur Rahman, Kenneth T. V. Grattan, and Hamdi A. El-Mikati
Appl. Opt. 39(27) 4946-4953 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved