Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 21,
  • Issue 10,
  • pp. 2194-
  • (2003)

Performance Limitation Due to Statistical Raman Crosstalk in a WDM System With Multiple-Wavelength Bidirectionally Pumped Raman Amplification

Not Accessible

Your library or personal account may give you access

Abstract

A general theoretical model of statistical Raman crosstalk and its impact on system performance in a multiwavelength bidirectionally pumped Raman fiber amplifier (RFA) is developed for the first time, where we have taken modulation statistics, dispersion-induced pulse walk-off and signal-induced pump depletion into account. Two kinds of statistical Raman crosstalk, from signal-induced forward-pump depletion and from signal-signal Raman interaction,are included in one model. Formulas for normalized Raman crosstalk, Raman crosstalk-induced relative intensity noise spectral density, and its variance and system performance impact in terms of Q penalty are presented for both a single-span system and a dispersion-compensated multispan wavelength-division-multiplexed (WDM) link. Based on these formulas,we numerically investigate the impact of Raman crosstalk on system performance in a three-wavelengths bidirectionally pumped 40 × 40-Gb/s WDM system for various fiber types. In addition, Raman crosstalk in a four-wavelength bidirectionally pumped RFA was experimentally measured. The results agree well with our theory.

© 2003 IEEE

PDF Article
More Like This
Fiber-bragg-grating-based dispersion-compensated and gain-flattened raman fiber amplifier

Shien-Kuei Liaw, Liang Dou, and Anshi Xu
Opt. Express 15(19) 12356-12361 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved