OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 22, Iss. 1 — Jan. 1, 2004
  • pp: 79–

Raman Amplification for Fiber Communications Systems

Jake Bromage

Journal of Lightwave Technology, Vol. 22, Issue 1, pp. 79- (2004)


View Full Text Article

Acrobat PDF (450 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Raman amplification has enabled dramatic increases in the reach and capacity of lightwave systems. This tutorial explains why, starting with the fundamental properties of gain from stimulated Raman scattering. Next,noise accumulation from amplified spontaneous emission is reviewed, and the merits of distributing Raman gain along a transmission fiber are explained. Other sources of noise that are particularly relevant for Raman amplifiers are summarized. Finally, novel Raman pumping schemes that have recently been developed are highlighted.

© 2004 IEEE

Citation
Jake Bromage, "Raman Amplification for Fiber Communications Systems," J. Lightwave Technol. 22, 79- (2004)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-22-1-79


Sort:  Journal  |  Reset

References

  1. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides", Appl. Phys. Lett., vol. 22, pp. 276-278, 1973.
  2. L. F. Mollenauer, J. P. Gordon and M. N. Islam, "Soliton propagation in long fibers with periodically compensated loss", IEEE J. Quantum Electron., vol. QE-22, pp. 157-173, 1986.
  3. S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrachi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar and D. J. DiGiovanni, "High power, 1.48 µm cascaded Raman laser in germanosilicate fibers", in Proc. Optical Amplifiers and Their Applicat., 1995.
  4. P. B. Hansen, L. Eskildsen, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani and D. J. DiGiovanni, "Capacity upgrades of transmission systems by Raman amplification", IEEE Photon. Technol. Lett., vol. 9, pp. 262-264, 1997.
  5. T. N. Nielsen, A. J. Stentz, P. B. Hansen, Z. J. Chen, D. S. Vengsarkar, T. A. Strasser, K. Rottwitt, J. H. Park, S. Stulz, S. Cabot, K. S. Feder, P. S. Westbrook and S. G. Kosinski, "1.6 T b/s (40 × 40 Gb/s) transmission over 4 × 100 km of nonzero-dispersion fiber using hybrid Raman/erbium-doped inline amplifiers", in Proc. Europ. Conf. Optical Communications , 1999.
  6. N. Tsukiji, J. Yoshida, T. Kimura, S. Koyanagi and T. Fukushima, "Recent progress of high power 14XX nm pump lasers", in Proc. ITcom Active and Passive Optical Components for WDM Communication (Denver), 2001, pp. 349-360.
  7. S. Namiki and Y. Emori, "Ultrabroad-band Raman amplifiers pumped and gain equalized by wavelength-division-multiplexed high-power laser diodes", IEEE J. Select. Topics Quantum Electron., vol. 7, pp. 3-16, 2001 .
  8. K. Rottwitt and A. J. Stentz, "Raman amplification in lightwave communications systems," in Optical Fiber Telecommunications, IVA, I. P. Kaminov, and T. Lee, Eds. San Diego, CA: Academic, 2002, pp. 213 -257.
  9. M. N. Islam, "Raman amplifiers for telecommunications", IEEE Select. Topics. Quant. Electron., vol. 8, pp. 548-559, 2002.
  10. M. N. Islam, Ed. Raman Amplifiers for Telecommunications, New York: Springer-Verlag, 2003.
  11. J. Bromage, "Raman amplification for fiber communication systems", in Proc. Optical Fiber Communications Conf., 2003.
  12. C. V. Raman and K. S. Krishnan, "A new type of secondary radiation", Nature, vol. 121, p. 501, 1928.
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Academic, 2000.
  14. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Philadelphia, PA: Saunders College, 1976.
  15. R. W. Hellwarth, "Theory of stimulated Raman scattering", Phys. Rev., vol. 130, pp. 1850-1852, 1963.
  16. A. Penzkofer, A. Laubereau and W. Kaiser, "High intensity Raman interactions", Prog. in Quantum Electron., vol. 6, pp. 55-140, 1982.
  17. Y. R. Chen and N. Bloembergen, "The stimulated Raman effect", Amer. J. Phys., vol. 35, pp. 989-1023, 1967.
  18. R. H. Stolen, J. P. Gordon, W. J. Tomlinson and H. A. Haus, "Raman response function of silica-core fibers", J. Opt. Soc. Amer. B, vol. 6, pp. 1159-1166, 1989.
  19. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers", IEEE J. Quantum Electron., vol. QE-15, pp. 1157 -1160, 1979.
  20. A. R. Chraplyvy, "Optical power limits in multi-channel wavelength-division multiplexed systems due to stimulated Raman scattering", Electron. Lett., vol. 20, pp. 58-59, 1984.
  21. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko and R. C. Powell, "Comparative spontaneous Raman spectroscopy of crystals for Raman lasers", Appl. Opt., vol. 38, pp. 594-598, 1999.
  22. W. P. Urquhart and P. J. Laybourn, "Effective core area for stimulated Raman scattering in single-mode optical fibers", Proc. Inst. Elect. Eng., vol. 132, pp. 201-204, 1985.
  23. N. Shibata, M. Horigudhi and T. Edahiro, "Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3", J. Non-Cryst. Solids, vol. 45, pp. 115-126, 1981.
  24. S. K. Sharma, D. W. Matson, J. A. Philpotts and T. L. Roush, "Raman study of the structure of lower pressure chemical vapor deposited and bulk SiO2 - P2O5 and SiO2 - GeO2 glasses", J. Electrochem. Soc., vol. 133, pp. 431-439, 1984.
  25. S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell and B. Wakefield, "Optical gain spectrum of GeO2 - SiO2 Raman fiber amplifiers", Proc. Inst. Elect. Eng., vol. 136, pp. 301-306, 1989.
  26. F. L. Galeener, A. J. Leadbetter and M. W. Stringfellow, "Comparison of the neutron, Raman and infrared vibrational spectra of vitreous SiO2, GeO2 and BeF2", Phys. Rev. B, vol. 27, pp. 1052-1078, 1983.
  27. J. Bromage, K. Rottwitt and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles", IEEE Photon. Technol. Lett., vol. 14, pp. 24-26, 2002.
  28. K. J. Cordina and C. R. S. Fludger, "Changes in Raman gain coefficient with pump wavelength in modern transmission fibers", in Proc. Optical Amplifiers and Their Applications, 2002.
  29. N. Newbury, "Full wavelength dependence of Raman gain in optical fibers: measurements using a single pump laser", in Proc. Optical Fiber Communications Conf., 2003.
  30. Y. Emori, Y. Akasaka and S. Namiki, "Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes", Electron. Lett., vol. 34, pp. 2145-2146, 1998.
  31. S. A. E. Lewis, F. Koch, S. V. Chernikov and J. R. Taylor, "Low-noise high gain dispersion compensating broadband Raman amplifier", in Proc. Optical Fiber Communications Conf., 2000.
  32. S. V. Chernikov, Y. Zhu, R. Kashyap and J. R. Taylor, "High-gain, monolithic, cascaded fiber Raman amplifier operating at 1.3 µm", Electron. Lett., vol. 31, pp. 472-473, 1995.
  33. A. K. Srivastava, et al. "Multi-service WDM transmission in 1.3/1.4/1.55 µm bands", in Proc. Europ. Conf. Optical Communications , vol. 2, 1999, pp. 200-201.
  34. J. Bromage, J.-C. Bouteiller, H. J. Thiele, K. Brar, J. H. Park, C. Headley, L. E. Nelson, Y. Qian, J. DeMarco, S. Stulz, L. Leng, B. Zhu and B. J. Eggleton, "S-band all-Raman amplifiers for 40 × 10 Gb/s transmission over 6 × 100 km of nonzero dispersion fiber", in Proc. Optical Fiber Communications Conf., 2001 .
  35. H. Masuda, S. Kawai, K. Suzuki and K. Aida, "1.65-µm band fiber Raman amplifier pumped by wavelength-tunable broad-linewidth light source", in Proc. Europ. Conf. Optical Communications, 1998, pp. 139-141.
  36. V. E. Perlin and H. G. Winful, "On distributed Raman amplification for ultrabroad-band long-haul WDM systems", J. Lightwave Technol., vol. 20, pp. 409-416, 2002.
  37. Y. Emori, K. Tanaka and S. Namiki, "100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit", Electron. Lett., vol. 35, pp. 1355-1356, 1999.
  38. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier", IEEE Photon. Technol. Lett., vol. 11, pp. 530-532, 1999.
  39. K. Rottwitt, J. Bromage, M. Du and A. J. Stentz, "Design of distributed Raman amplifiers", in Proc. Europ. Conf. Optical Communications, vol. 2, 2000, pp. 67-71.
  40. C. R. S. Fludger and R. J. Mears, "Electrical measurements of multipath interference in distributed Raman amplifiers", J. Lightwave Technol., vol. 19, pp. 536-545, 2001.
  41. N. A. Olsson, "Lightwave systems with optical amplifiers", J. Lightwave Technol. , vol. 7, pp. 1071-1082, 1989.
  42. Y. Sun, I. Lima, A. Lima, H. Jiao, J. Zweck, L. Yan, C. Menyuk and G. Carter, "Effects of partially polarized noise in a receiver", in Proc. Optical Fiber Communications Conf., 2003.
  43. D. Derickson, Ed. Fiber Optic Test and Measurement, Upper Saddle River, NJ: Prentice-Hall, 1998.
  44. H. T. Friis, "Noise figures of radio receivers", in Proc. IRE, vol. 32, 1944, pp. 419-422.
  45. H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements, Berlin: Germany: Springer-Verlag, 2000.
  46. E. Desurvire, Erbium-Doped Fiber Amplifiers, New York: Wiley, 1994, pp. 624-626.
  47. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering", Appl. Opt., vol. 11, pp. 2489 -2494, 1972.
  48. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani and D. J. DiGiovanni, "Rayleigh scattering limitations in distributed Raman pre-amplifiers", IEEE Photon. Technol. Lett., vol. 10, pp. 159-161, 1998.
  49. D. N. Christodoulides and R. B. Jander, "Evolution of stimulated Raman crosstalk in wavelength division multiplexed systems", IEEE Photon. Technol. Lett., vol. 8, pp. 1722-1744, 1996.
  50. P. M. Krummrich, R. E. Neuhauser, H. Bock, W. Fischler and C. Glingener, "System performance improvements by codirectional Raman pumping of the transmission fiber", in Proc. Europ. Conf. Optical Communications, 2001 .
  51. A. Carena, V. Curri and P. Poggiolini, "On the optimization of hybrid Raman/erbium-doped fiber a mplifiers", IEEE Photon. Technol. Lett., vol. 13, pp. 1170-1172, 2001.
  52. R.-J. Essiambre, P. J. Winzer, J. Bromage and C. H. Kim, "Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering", IEEE Photon. Technol. Lett., vol. 14, pp. 914-916, 2002.
  53. J. Bromage, J.-C. Bouteiller, H. J. Thiele, K. Brar, L. E. Nelson, S. Stulz, C. Headley, J. Kim, A. Klein, G. Baynham, L. V. Jörgensen, L. Grüner-Nielsen, R. L. LingleJr. and D. J. DiGiovanni, "High co-directional Raman gain for 200-km spans, enabling 40 × 10.66 G b/s transmission over 2400 km,", in Proc. Optical Fiber Communications Conf., 2003.
  54. J. Bromage, P. J. Winzer and R.-J. Essiambre, "Multiple path interference and its impact on system design," in Raman Amplifiers for Telecommunications, M. N. Islam, Ed. New York: Springer-Verlag, 2003, ch. 15.
  55. J. A. Armstrong, "Theory of interferometric analysis of laser phase noise", J. Opt. Soc. Amer., vol. 56, pp. 1024-1031, 1966.
  56. J. L. Gimlett and N. K. Cheung, "Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems", J. Lightwave Technol., vol. 7, pp. 888-895, 1989.
  57. C. H. Kim, J. Bromage and R. M. Jopson, "Reflection-induced penalty in Raman amplified systems", IEEE Photon. Technol. Lett., vol. 14, pp. 573-575, 2002.
  58. A. J. Stentz, T. Nielsen, S. G. Grubb, T. A. Strasser and J. R. Pedrazzani, "Raman ring amplifier at 1.3 µm with analog-grade noise performance and an output power of 23 dBm", in Proc. Optical Fiber Communications Conf., 1996.
  59. M. Ohashi, K. Shiraki and K. Tajima, "Optical loss property of silica-based single-mode fibers", J. Lightwave Technol., vol. 10, pp. 539-543, 1992.
  60. E. Brinkmeyer, "Analysis of the backscattering method for single-mode optical fibers", J. Opt. Soc. Amer., vol. 70, pp. 1010-1012, 1980.
  61. A. H. Hartog and M. P. Gold, "On the theory of backscattering in single-mode optical fibers", J. Lightwave Technol., vol. LT-2, pp. 76-82, 1984.
  62. M. O. van Deventer, "Polarization properties of Rayleigh backscattering in single-mode fibers", J. Lightwave Technol., vol. 11, pp. 1895-1899, 1993.
  63. J. Bromage, C. H. Kim, R. M. Jopson, K. Rottwitt and A. J. Stentz, "Dependence of double-Rayleigh backscatter noise in Raman amplifiers on gain and pump depletion", in Proc. Optical Amplifiers and Their Applications, 2001.
  64. P. J. Winzer, "Optical transmitters, receivers and noise," in Wiley Encyclopedia of Telecommunications,J. G. Proakis, Ed. Wiley, 2002, pp. 1824-1840.
  65. J. Bromage, C.-H. Kim, P. J. Winzer, L. E. Nelson, R.-J. Essiambre and R. M. Jopson, "Relative impact of multiple-path interference and amplified spontaneous emission noise on optical receiver performance", in Proc. Optical Fiber Communication Conf., 2002.
  66. C. Martinelli, G. Charlet, L. Pierre, J. Antona and D. Bayart, "System inpairment of double-Rayleigh scattering and dependence on modulation format", in Proc. Optical Fiber Communications Conf., 2003 .
  67. C. J. Rasmussen, F. Liu, R. J. S. Pedersen and B. F. Jorgensen, "Theoretical and experimental studies of the influence of the number of crosstalk signals on the penalty caused by incoherent optical crosstalk", in Proc. Optical Fiber Communications Conf., 1999.
  68. P. J. Winzer, R.-J. Essiambre and J. Bromage, "Combined impact of double-Rayleigh backscatter and amplified spontaneous emission on receiver noise", in Proc. Optical Fiber Communications Conf., 2002 .
  69. M. Nissov, K. Rottwitt, H. D. Kidorf and M. X. Ma, "Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers", Electron. Lett., vol. 35, pp. 997-998, 1999.
  70. R. E. Neuhauser, P. M. Krummrich, H. Bock and C. Glingener, "Impact of nonlinear pump interactions on broadband distributed Raman amplification", in Proc. Optical Fiber Communications Conf., 2001.
  71. N. Shibata, R. P. Braun and R. G. Waarts, "Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in single-mode optical fiber", IEEE J. Quantum Electron., vol. QE-23, pp. 1205-1210, 1987.
  72. L. Leng, B. Zhu, S. Stulz, L. E. Nelson, J. C. Bouteiller, P. Kristensen and L. Grüner-Nielsen, "Experimental investigation of the impact of NZDF zero-dispersion wavelength on broadband transmission in Raman-enhanced systems", in Optical Fiber Communications Conf., 2003.
  73. J.-C. Bouteiller, L. Leng and C. Headley, "Pump-pump four-wave mixing in distributed Raman amplified systems", J. Lightwave Technol., Mar. 2003 .
  74. K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights", IEEE Photon. Technol. Lett., vol. 6, pp. 1451-1453, 1994.
  75. M.-C. Ho, C.-J. Chen, W. S. Wong and H. K. Lee, "Parametric interactions between pumps and signals in a co-pumped Raman amplifier", in Proc. Conf. Lasers and Electro-Optics, 2002.
  76. J. Bromage, P. J. Winzer, L. E. Nelson and C. J. McKinstrie, "Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers", in Proc. Optical Amplifiers and Their Applications, 2002.
  77. From private correspondence with R. H. Stolen.
  78. H. Kogelnik, L. E. Nelson and R. M. Jopson, "Polarization-mode dispersion," in Optical Fiber Telecommunications, Vol IVB, I. Kaminow, and T. Li, Eds. New York: Elsevier Science, 2002, pp. 725-862.
  79. Q. Lin and G. Agrawal, "PMD effects in fiber-based Raman amplifiers", in Optical Fiber Communications Conf., 2003.
  80. E. Son, J. Lee and Y. Chung, "Gain variation of Raman amplifier in birefringent fiber", in Optical Fiber Communications Conf., 2003.
  81. H. H. Kee, C. R. S. Fludger and V. Handerek, "Statistical properties of polarization dependent gain in fiber Raman amplifiers", in Proc. Optical Fiber Communications Conf., 2002.
  82. K. Böhm, K. Petermann and E. Weidel, "Performance of Lyot depolarizers with birefringent single-mode fibers", J. Lightwave Technol. , vol. LT-1, pp. 71-74, 1983.
  83. J. S. Wang, J. R. Costelloe and R. H. Stolen, "Reduction of the degree of polarization of a laser diode with a fiber Lyot depolarizer", IEEE Photon. Technol. Lett., vol. 11, pp. 1449-1451, 1999.
  84. C. R. S. Fludger, V. Handerek and R. J. Mears, "Pump to signal RIN transfer in Raman fiber amplifiers", J. Lightwave Technol., vol. 19, pp. 1140-1148, 2001.
  85. C. R. S. Fludger, V. Handerek and R. J. Mears, "Pump to signal RIN transfer in Raman fiber amplifiers", IEEE J. Lightwave Technol., vol. 19, pp. 1140-1148, 2001.
  86. Y. Ohki, N. Hayamizu, H. Shimizu, S. Irino, J. Yoshida, N. Tsukiji and S. Namiki, " increase of relative intensity noise after fiber transmission in co-propagating Raman pump lasers", in Proc. Optical Amplifiers and Their Applications, 2002.
  87. W. Jiang and P. Ye, "Crosstalk in fiber Raman amplification for WDM systems", IEEE J. Lightwave Technol., vol. 7, pp. 1407 -1411, 1989.
  88. F. Forghieri, R. W. Tkach and A. R. Chraplyvy, "Bandwidth of cross talk in raman amplifiers", in Proc. Optical Fiber Communications Conf., 1994.
  89. M. Du, T. N. Nielsen, K. Rottwitt and A. J. Stentz, "WDM Optical Communication System Using Co-Propagating Raman Amplification", Tech. Rep. 6 417 958, 2002.
  90. S. Kado, Y. Emori, S. Namiki, N. Tsukiji, J. Yoshida and T. Kimura, "Broadband flat-noise Raman amplifier using low-noise bi-directionally pumping sources", in Proc. Europ. Conf. Optical Communications, 2001.
  91. B. Zhu, L. Leng, L. E. Nelson, L. Grüner-Nielsen, Y. Qian, J. Bromage, S. Stulz, S. Kado, Y. Emori, S. Namiki, P. Gaarde, A. Judy, B. Palsdottir and R. L. LingleJr., "3.2 Tb/s (80 × 42.7 Gb/s) transmission over 20 × 100 km of nonzero dispersion fiber with simultaneous C + L-band dis persioncompensation", in Proc. Optical Fiber Communications Conf., 2002.
  92. C. R. S. Fludger, V. Handerek and R. J. Mears, "Fundamental noise limits in broadband Raman amplifiers", in Proc. Optical Fiber Communications Conf., 2001.
  93. C. R. S. Fludger, V. Handerek, N. Jolley and R. J. Mears, "Novel ultra-broadband high performance distributed Raman amplifier employing pump modulation", in Proc. Optical Fiber Communications Conf., 2002 .
  94. P. J. Winzer, K. Sherman and M. Zirngibl, "Experimental demonstration of time division multiplexed Raman pumping", in Proc. Optical Fiber Communications Conf., 2002.
  95. L. F. Mollenauer, A. R. Grant and P. V. Mamyshev, "Time-division multiplexing of pump wavelengths to achieve ultrabroadband, flat, backward-pumped Raman gain", Opt. Lett., vol. 27, pp. 592-594, 2002.
  96. J. W. Nicholson, J. Fini, J.-C. Bouteiller, J. Bromage and K. Brar, "A swept-wavelength Raman pump with 69 MHz repetition rate", in Proc. Optical Fiber Communications Conf., 2003.
  97. A. R. Grant, "Calculating the Raman pump distribution to achieve minimum gain ripple", IEEE J. Quantum Electron., vol. 38, pp. 1503-1509, 2002.
  98. P. J. Winzer, J. Bromage, R. T. Kane, P. A. Sammer and C. Headley, "Tuning speed requirements for time-division multiplexed Raman pump amplifiers", in Proc. Europ. Conf. Optical Communications, 2002.
  99. K. Rottwitt, A. J. Stentz, T. N. Nielsen, P. B. Hansen, K. Feder and K. Walker, "80-km bi-directionally pumped distributed Raman amplifier using second-order pumping", in Proc. Europ. Conf. Optical Communications, 1999.
  100. J. C. Bouteiller, K. Brar, J. Bromage, S. Radic and C. Headley, "Dual-order Raman pump", IEEE Photon Technol. Lett., vol. 15, pp. 212-214, 2003.
  101. S. B. Papernyi, V. I. Karpov and W. R. L. Clements, "Third-order cascaded Raman amplification", in Proc. Optical Fiber Communications Conf., 2002.
  102. L. Labrunie, F. Boubal, E. Brandon, L. Buet, N. Darbois, D. Dufournet, V. Harvard, P. Le Roux, M. Mesic, L. Piriou, A. Tran and J.-P. Blondel, "1.6 Terabits/s (160 × 10.66 G bit/s) unrepeatered transmissio nover 321 km using second-order pumping distributed Raman amplification", in Proc. Optical Amplifiers and Their Applications, 2001.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited