OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 22, Iss. 4 — Apr. 1, 2004
  • pp: 953–

Coherent Frequency-Selective Polarimeter for Polarization-Mode Dispersion Monitoring

I. Roudas, G. A. Piech, M. Mlejnek, Y. Mauro, D. Q. Chowdhury, and M. Vasilyev

Journal of Lightwave Technology, Vol. 22, Issue 4, pp. 953- (2004)


View Full Text Article

Acrobat PDF (459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Frequency-selective polarimeters measure the state of polarization of the individual spectral components of a modulated optical signal. They can be used either as stand-alone measuring devices or as parts of adaptive polarization-mode dispersion (PMD) compensators. This paper presents a novel frequency-selective polarimeter based on coherent detection, which has superior accuracy compared to previously proposed direct detection-based counterparts. This is due to the high-frequency resolution and power sensitivity of coherent detection,features that minimize the systematic and random error, respectively, in the measurement of the state of polarization of the individual spectral components of the received optical signal. The accuracy of the measurement is independent of the received signal bit rate and modulation format. The proposed frequency-selective polarimeter is studied both theoretically and experimentally. The primary theoretical contribution of this paper is a unified formalism, which allows the modeling of both direct and coherent detection-based frequency-selective polarimeters. Analytical expressions for the output signal of both types of frequency-selective polarimeters are derived. Based on these expressions,a common algorithm is proposed for the evaluation of the Stokes parameters. In addition, an example error signal is used as a metric in order to test the agreement of the theoretical model with the experimental measurements. The successful operation of the coherent frequency-selective polarimeter is demonstrated experimentally for a 10-Gb/s intensity-modulated nonreturn-to-zero (NRZ) optical signal in the presence of first-order polarization-mode dispersion. There is an excellent agreement between theory and experiment.

© 2004 IEEE

Citation
I. Roudas, G. A. Piech, M. Mlejnek, Y. Mauro, D. Q. Chowdhury, and M. Vasilyev, "Coherent Frequency-Selective Polarimeter for Polarization-Mode Dispersion Monitoring," J. Lightwave Technol. 22, 953- (2004)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-22-4-953


Sort:  Journal  |  Reset

References

  1. C. D. Poole and J. Nagel, "Polarization effects in lightwave systems," in Optical Fiber Telecommunications, I. P. Kaminow, and T. L. Koch, Eds. San Diego, CA: Academic, 1997,vol. III-A,ch. 6, pp. 114-161.
  2. E. Brinkmeyer, "PMD compensation", in Proc. Eur. Conf. Optical Commun. (ECOC'02), Copenhagen, Denmark,Sept. 2002,paper 9.3.1.
  3. H. Rosenfeldt, R. Ulrich, U. Feiste, R. Ludwig, H. G. Weber and A. Ehrhardt, "PMD compensation in 10 Gbit/s NRZ field experiment using polarimetric error signal", Electron. Lett., vol. 36, no. 5, pp. 448-450, 2000.
  4. L. Möller and L. Buhl, "Method for PMD vector monitoring in picosecond pulse transmission systems", J. Lightwave Technol., vol. 19, pp. 1125-1129, 2001.
  5. P. Westbrook, L. Möller, S. Chandrasekhar, R. Dutta and S. Wielandy, "Wavelength sensitive polarimeter for multichannel polarization and PMD monitoring", in Proc. Optical Fiber Communication Conf. (OFC'02), Anaheim, CA, Mar. 2002,paper WK5.
  6. I. Roudas, G. Piech, M. Mlejnek, Y. Zhu and D. Q. Chowdhury, "Coherent heterodyne frequency-selective polarimeter for error-signal generation in higher-order PMD compensators", in Proc. Optical Fiber Communication Conf. (OFC'02), Anaheim, CA, Mar. 2002,paper WQ2.
  7. R. A. Linke and A. H. Gnauck, "High-capacity coherent lightwave systems", J. Lightwave Technol., vol. 5, pp. 1750-1769, Nov. 1988 .
  8. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, Fourth ed. New York: McGraw-Hill, 2002, ch. 12.
  9. D. M. Baney, B. Szafraniec and A. Motamedi, "Coherent optical spectrum analyzer", IEEE Photon. Technol. Lett., vol. 14, pp. 355 -357, Mar. 2002.
  10. B. Szafraniec, A. Motamedi and D. M. Baney, "Polarization-diverse coherent optical spectrum analyzer with swept local oscillator", in Proc. Optical Fiber Communication Conf. (OFC'02), Anaheim, CA, Mar. 2002,paper ThGG5.
  11. G. D. VanWiggeren, A. R. Motamedi, B. Szafraniec, R. S. Tucker and D. M. Baney, "Single-scan polarization-resolved heterodyne optical network analyzer", in Proc. Optical Fiber Communication Conf. (OFC'02), Anaheim, CA, Mar. 2002,paper WK2.
  12. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, Second ed. New York: Wiley, 1986 .
  13. O. K. Tonguz, O. M. Tanrikulu and L. G. Kazovsky, "Performance of coherent ASK lightwave systems with finite intermediate frequency", IEEE Trans. Commun., vol. 45, pp. 344-351, Mar. 1997.
  14. B. S. Glance, "An optical heterodyne mixer providing image-frequency rejection", J. Lightwave Technol., vol. LT-4, pp. 1722-1725, Nov. 1986 .
  15. F.-J. Westphal and B. Strebel, "Optical heterodyne image rejection receiver", Electron. Lett., vol. 24, pp. 440-442, Mar. 1988 .
  16. T. Chikama, T. Naito, S. Watanabe, T. Kiyonaga, M. Suyama and H. Kuwahara, "Optical heterodyne image-rejection receiver for high-density optical frequency division multiplexing system", IEEE J. Select. Areas Commun., vol. 8, pp. 1087-1094, Aug. 1990 .
  17. G. P. Agrawal, Fiber-Optic Communication Systems, Second ed. New York: Wiley, 1992.
  18. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications , Third ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
  19. K. S. Shanmugam, Digital and Analog Communication Systems, New York: Wiley, 1979.
  20. J. G. Proakis, Digital Communications, Third ed. New York: McGraw-Hill, 1995.
  21. M. Born and E. Wolf, Principles of Optics, Sixth ed. New York: Cambridge Univ. Press, 1997.
  22. S. Shin, I. Yeo, H. Song, J. Park, Y. Park and B. Jo, "Real-time endless polarization tracking and control system for PMD compensation", in Proc. Optical Fiber Communication Conf. (OFC'01), Anaheim, CA, Mar. 2001,paper TuP7.
  23. J. P. Gordon and H. Kogelnik, "PMD fundamentals: Polarization mode dispersion in optical fibers", Proc. Nat. Acad. Sci., vol. 97, no. 9, pp. 4541-4550, 2000.
  24. R. M. A. Azzam, I. M. Elminyawi and A. M. El-Saba, "General analysis and optimization of the four-detector photopolarimeter", J. Opt. Soc. Amer. A, vol. 5, no. 5, pp. 681-689, 1988.
  25. G. L. Abbas, V. W. S. Chan and T. K. Yee, "A dual-detector optical heterodyne receiver for local oscillator noise suppression", J. Lightwave Technol., vol. LT-3, pp. 1110-1122, 1985.
  26. L. G. Kazovsky, S. Benedetto and A. Willner, Optical Fiber Communication Systems, Boston, MA: Artech, 1996.
  27. D. Q. Chowdhury, I. Roudas and R. S. Vodhanel, "System and method for measurement of the state of polarization over wavelength", U.S. Patent 6 563 590, May 13, 2003.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited