OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 23, Iss. 3 — Mar. 1, 2005
  • pp: 1189–

Numerical Study on Nonlinear Pulse Transmission in a Fiber Link With Periodical Dispersion Slope Compensation

Joji Maeda and Yutaka Fukuchi

Journal of Lightwave Technology, Vol. 23, Issue 3, pp. 1189- (2005)

View Full Text Article

Acrobat PDF (334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In fiber links with a bit rate greater than 100 Gb/s per wavelength channel, the third-order dispersion (TOD), known as the dispersion slope, becomes a major factor that limits transmission capabilities. This paper presents a numerical study on the propagation of picosecond pulses in anomalous dispersion fibers, the dispersion slope of which is periodically compensated for by lumped compensators. In particular,pulse propagation is discussed in comparison with path-averaged solitons in a dispersion-flattened fiber. Simulations of single-pulse transmission reveal that pulses in the slope-compensated link can be easily dispersed. The dispersive component can be effectively eliminated by introducing inline bandpass filters,the bandwidth of which is smaller than that suitable for solitons in a dispersion-flattened fiber. The transmission of a pulse pair is also considered and is predicted to be stabilized for transmission power larger than that which is optimum for solitons in a dispersion-flattened fiber. These predictions are confirmed by demonstrating system analyses using a pseudorandom bit stream, showing that the penalty of the slope compensation is due to an increase in timing jitter.

© 2005 IEEE

Joji Maeda and Yutaka Fukuchi, "Numerical Study on Nonlinear Pulse Transmission in a Fiber Link With Periodical Dispersion Slope Compensation," J. Lightwave Technol. 23, 1189- (2005)

Sort:  Journal  |  Reset


  1. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada and T. Kanamori, "1 Tbit/s (100 Gbit/s x 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source", Electron. Lett., vol. 32, no. 10, pp. 906-907, May 1996.
  2. C. D. Chen, I. Kim, O. Mizuhara, T. V. Nguyen, K. Ogawa, R. E. Tench and L. D. Tzeng, "40 Gbit/s x 25 ch (1 Tbit/s aggregate capacity) WDM transmission over 342 km of fiber", Electron. Lett., vol. 35, no. 8, pp. 648-649, Apr. 1999.
  3. Y. Miyamoto, K. Yonenaga, S. Kuwahara, M. Tomizawa, A. Hirano, H. Toba, K. Murata, Y. Tada and Y. Umeda, "1.2 Tbit/s 30 x 42.7 Gbit/s ETDM channel) WDM transmission over 3 x 125 km with forward error correction", Electron. Lett., vol. 36, no. 9, pp. 812-813, Apr. 2000.
  4. B. Zhu, L. Leng, L. E. Nelson, Y. Qian, L. Cowsar, S. Stulz, C. Doerr, L. Stulz, S. Chandrasekhar, S. Radic, D. Vengsarkar, Z. Chen, J. Park, K. S. Feder, H. Thiele, J. Bromage and L. Gruner-Nielsen, "3.08 Tbit/s 77 x 42.7 Gbit/s) WDM transmission over 1200 km fiber with 100 km repeater spacing using dual C-and L-band hybrid raman/erbium-doped inline amplifiers", Electron. Lett., vol. 37, no. 13, pp. 844-845, Jun. 2001.
  5. T. Tsuritani, A. Agata and I. Morita, "21.4 gbit/s x 56 WDM 9170 km transmission using symmetrically dispersion-managed fiber span", Electron. Lett., vol. 37, no. 25, pp. 1536-1538, Dec. 2001.
  6. L. du Mouza, G. L. Meur, H. Mardoyan, E. Seve, S. Cussat-Blanc, D. Hamoir, C. Martinelli, D. Bayart, F. Raineri, L. Pierre, B. Dany, O. Leclerc, J. P. Hamaide, L. A. de Montmorillon, F. Beaumont, P. Sillard, P. Nouchi, A. Hugbart and R. Uhel, "1.28 Tbit/s 32 x 40 Gbit/s) WDM transmission over 2400 km of teralighttm/reverse Teralight(c) fibers using distributed all-Raman amplification", Electron. Lett., vol. 37, no. 21, pp. 1300-1302, Oct. 2001.
  7. S. Kuwahara, K. Yonenaga, Y. Miyamoto, Y. Kisaka, K. Sato, A. Hirano, T. Ono, A. Matsuura, M. Tomizawa, T. Kataoka, Y. Tada, H. Toba and N. Hirayama, "1 Tbit/s field trial with 100 GHz spacing over 91 km SMF using 43 Gbit/s/channel OTN interface prototype", Electron. Lett., vol. 37, no. 14, pp. 904-906, Jul. 2001.
  8. Y. Yamada, S. I. Nakagawa, Y. Kurosawa, T. Kawazawa and H. Taga, "2 Tbit/s 200 x 10 Gbit/s) over 9240 km transmission experiment with 0.15 nm channel spacing using VSB format", Electron. Lett., vol. 38, no. 7, pp. 328-330, Mar. 2002.
  9. T. Mizuochi, K. Ishida, K. Kinjo, T. Kobayashi, S. Kajiya, K. Shimizu, T. Tokura and K. Motoshima, "1.7 Tbit/s 85 x 22.8 Gbit/s) transmission over 9180 km using symmetrically collided transmission methodology", Electron. Lett., vol. 38, no. 21, pp. 1264-1265, Oct. 2002.
  10. H. Bissessur, G. Charlet, W. Idler, C. Simonneau, S. Borne, L. Pierre, R. Dischler and C. D. Barros, "3.2 Tbit/s 80 x 40 Gbit/s) phase-shaped binary transmission over 3 x 100 km with 0.8 bit/s/Hz efficiency", Electron. Lett., vol. 38, no. 8, pp. 377-379, Apr. 2002.
  11. B. Zhu, L. E. Nelson, S. Stulz, A. H. Gnauck, C. Doerr, J. Leuthold, L. Grüner-Nielsen, M. O. Pedersen, J. Kim, R. LingleJr, Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri and S. Namiki, "6.4 Tb/s160 x 42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32 x 100 km of fiber using CSRZ-DPSK format", in Tech. Dig. Optical Fiber Communication Conf. (OFC), 2003, pp. PD19-1-PD19-3.
  12. G. Charlet, S. Lanne, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J.-C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler and S. Bigo, "Cost-optimized 6.3 Tbit/s-capacity terrestrial link over 17 x 100 km using phase-shaped binary transmission in a conventional all-EDFA SMF-based system", in Tech. Dig. Optical Fiber Communication Conf. (OFC), 2003, pp. PD25-1-PD25-3.
  13. T. Matsuda, T. Kotanigawa and T. Kataoka, "54 x 42.7 Gbit/s L-and U-band WDM signal transmission experiments with in-line hybrid optical amplifiers", Electron. Lett., vol. 40, no. 6, pp. 380-381, Mar. 2004.
  14. M. Nakazawa, K. Suzuki, E. Yoshida, E. Yamada and T. Kitoh, "160 Gbit/s soliton data transmission over 200 km", Electron. Lett., vol. 31, no. 7, pp. 565-566, Mar. 1995.
  15. S. Kawanishi, H. Takara, T. Morioka, O. Kamatani, K. Takiguchi and T. Kitoh, "Single channel 400 Gbit/s time-division-multiplexed transmission of 0.98 ps pulses over 40 Km employing dispersion slope compensation", Electron. Lett., vol. 32, no. 10, pp. 916-918, May 1996.
  16. S. Kawanishi, H. Takara, K. Uchiyama, I. Shake and O. Kamatani, "1.4 Tbit/s (200 gbit/s x 7 ch) 50 km optical transmission experiment", Electron. Lett., vol. 33, no. 20, pp. 1716-1717, Sep. 1997.
  17. E. Yoshida, T. Yamamoto, A. Sahara and M. Nakazawa, "320 Gbit/s TDM transmission over 120 km using 400 fs pulse train", Electron. Lett., vol. 34, no. 10, pp. 1004-5, May 1998.
  18. T. Yamamoto, E. Yoshida, K. R. Tamura and K. Yonenaga, "640-Gbit/s optical TDM transmission over 92 km through a dispersion-managed fiber consisting of single-mode fiber and"reverse dispersion fiber", IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 353 -355, Mar. 2000.
  19. R. Ludwig, U. Feiste, S. Diet, C. Schubert, C. Schmidt and H. J. Ehrke, "Unrepeatered 160 Gbit/s RZ single-channel transmission over 160 km of standard fiber at 1.55 µ m with hybrid MZI optical demultiplexer", Electron. Lett., vol. 36, no. 16, pp. 1405-1406, Aug. 2000.
  20. V. Kaman and J. E. Bowers, "120 Gbit/s OTDM system using electroabsorption transmitter and demultiplexer operating at 30 GHz", Electron. Lett., vol. 36, no. 17, pp. 1477-1479, Aug. 2000.
  21. L. J. Richardson, W. Forysiak and K. Blow, "Single channel 320 Gbit/s short period dispersion managed transmission over 6000 km", Electron. Lett., vol. 36, no. 24, pp. 2029-2030, Nov. 2000.
  22. U. Feiste, R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H. G. Weber, B. Schmauss, A. Munk, B. Buchold, D. Briggmann, F. Kueppers and F. Rumpf, "160 Gbit/s transmission over 116 km field-installed fiber using 160 Gbit/s OTDM and 40 Gbit/s ETDM", Electron. Lett., vol. 37, no. 7, pp. 443-445, Mar. 2001.
  23. S. Ferber, R. Ludwig, C. Boerner, A. Wietfeld, B. Schmauss, J. Berger, C. Schubert, G. Unterboersch and H. Weber, "Comparison of DPSK and OOK modulation format in 160 Gbit/s transmission system", Electron. Lett., vol. 39, no. 20, pp. 1477-1479, Oct. 2003.
  24. E. Tangdiongga, J. P. Turkiewicz, H. Rohde, W. Schairer, G. Lehmann, E. S. R. Sikora, Y. R. Zhou, A. Lord, D. Payne, G. D. Khoe and H. de Waardt, "160 Gbit/s OTDM add-drop networking using 275 km installed fibers", Electron. Lett., vol. 40, no. 9, pp. 552-554, Apr. 2004.
  25. N. Yamada and S. Nogiwa, "640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses", IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1125-1127, Apr. 2004.
  26. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. New York: Wiley, 2002.
  27. A. Yariv, D. Fekete and D. M. Pepper, "Compensation for channel dispersion by nonlinear optical phase conjugator", Opt. Lett., vol. 4, pp. 52-54, 1979.
  28. S. Watanabe and T. Chikama, "Cancellation of four-wave mixing in multichannel fiber transmission by midway optical phase conjugation", Electron. Lett, vol. 30, no. 14, pp. 1156-1157, 1994.
  29. S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation", J. Lightw. Technol., vol. 14, no. 3, pp. 243-247, Mar. 1996.
  30. D. D. Marcenac, D. Nesset, A. E. Kelly and D. Gavrilovic, "40 Gbit/s transmission over 103 km of ndsf using polarization independent mid-span spectral inversion by four-wave mixing in a semiconductor optical amplifier", Electron. Lett., vol. 34, no. 1, pp. 100-101, Jan. 1998.
  31. U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. J. Ehrke, E. Patzak, H. G. Weber and T. Merker, "80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a sagnac-interferometer", IEEE Photon. Technol. Lett., vol. 11, no. 8, pp. 1063-1065, Aug. 1999.
  32. S. Y. Set, R. Girardi, E. Riccardi, B. E. Olsson, M. Puleo, M. Ibsen, R. I. Laming, P. A. Andrekson, F. Cisternino and H. Geiger, "40 Gbit/s field transmission over standard fiber using midspan spectral inversion for dispersion compensation", Electron. Lett., vol. 35, no. 7, pp. 581-582, 1999.
  33. K. Kikuchi and K. Matsuura, "Transmission of 2-ps optical pulses at 1550 nm over 40-km standard fiber using midspan optical phase conjugation in semiconductor optical amplifiers", IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1410-1412, Oct. 1998.
  34. D. Kunimatsu, C. Q. Xu, M. D. Pelusi, X. Wang, K. Kikuchi, H. Ito and A. Suzuki, "Subpicosecond pulse transmission over 144 km using midway optical phase conjugateion via a cascaded second-order process in a LiNbO3 waveguide", IEEE Photon. Technol. Lett., vol. 12, no. 12, pp. 1621-1623, Dec. 2000.
  35. M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shumulovich, D. Philen, S. Kosinski, K. R. Parameswaran and M. M. Fejer, "Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides", IEEE Photon. Technol. Lett., vol. 12, no. 1, pp. 82-84, Jan. 2000.
  36. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Academic, 2001.
  37. A. Hasegawa and Y. Kodama, Solitons in Optical Communications, New York: Oxford University Press, 1995.
  38. M. Suzuki, I. Morita, K. Tanaka, N. Edagawa, S. Yamamoto and S. Akiba, "160 Gbit/s (8 x 20 Gbit/s) soliton WDM transmission experiments using dispersion flattened fiber and periodic dispersion compensation", Electron. Lett., vol. 34, no. 5, pp. 475-476, Mar. 1998.
  39. Y. Akasaka, R. Sugizaki, S. Arai and Y. Suzuki, "Dispersion flat compensation fiber for dispersion shifted fiber", in Proc. 22nd Eur. Conf. Optical Communication (ECOC 1996) , vol. 2, Sep. 1996, pp. 221-224.
  40. J. A. R. Williams, L. A. Everall and I. Bennion, "Fiber Bragg grating fabrication for dispersion slope compensation", IEEE Photon. Technol. Lett., vol. 8, no. 9, pp. 1187-1189, Sep. 1996.
  41. M. Onishi, T. Kashiwada, Y. Koyano, Y. Ishiguro and M. Nishimura, "Third-order dispersion compensating fibers for nonzero dispersion shifted fiber links", Electron. Lett., vol. 32, no. 25, pp. 2344-2345, Dec. 1996.
  42. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo and L. T. Gomez, "Integrated all-pass filters for tunable dispersion and dispersion slope compensation", IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1623-1625, Dec. 1999.
  43. K. Tanaka, T. Tsuritani and N. Edagawa, "320 Gbit/s (32 x 10.7 Gbit/s) error-free transmission over 7280 km using dispersion flattened fiber link with standard SMF and slope compensating DCF", Electron. Lett., vol. 35, no. 21, pp. 1860-1862, Oct. 1999.
  44. K. Takiguchi and K. Okamoto, "Integrated optic dispersion slope equaliser for n x 20 Gbit/s WDM transmission", Electron. Lett., vol. 37, no. 11, pp. 701-703, May 2001.
  45. C. S. Goh, S. Y. Set, K. Taira and S. K. Khijwania, "Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope", IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 663-665, May 2002.
  46. Y. W. Song, S. M. R. M. Nezam, D. Starodubov, J. E. Rothenberg, Z. Pan, H. Li, R. Wilcox, J. Popelek, R. Caldwell and V. Grubsky, "Tunable interchannel broad-band dispersion-slope compensation for 10-Gb/s WDM systems using a nonchannelized third-order chirped FBG", IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 144-146, Jan. 2003.
  47. C. S. Goh and S. Y. Set, "Design and fabrication of a tunable dispersion-slope compensating module based on strain-chirped fiber Bragg gratings", IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 524-526, Feb. 2004.
  48. S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara and T. Miyazaki, "Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions", IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1095-1097, Apr. 2004.
  49. A. H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata and V. Gusmeroli, "16 x 20-Gb/s, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module", IEEE Photon. Technol. Lett., vol. 12, no. 4, pp. 437-439, Apr. 2000.
  50. P. K. A. Wai, H. H. Chen and Y. C. Lee, "Radiation by solitons at the zero group-dispersion wavelength of single-mode optical fibers", Phys. Rev. A, Gen. Phys., vol. 41, no. 1, pp. 426-439, Jan. 1990.
  51. A. Mecozzi, J. Moores, H. A. Haus and Y. Lai, "Soliton transmission control", Opt. Lett. , vol. 16, pp. 1841-1843, 1991.
  52. L. F. Mollenauer, J. P. Gordon and S. G. Evangelides, "The sliding-frequency guiding filter: An improved form of soliton jitter control", Opt. Lett., vol. 17, no. 22, pp. 1575-1577, Nov. 1992.
  53. Y. Kodama and A. Hasegawa, "Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect", Opt. Lett. , vol. 17, pp. 31-33, 1992.
  54. M. Nakazawa, K. Kurokawa, H. Kubota and E. Yamada, "Observation of the trapping of an optical soliton by adiabatic gain narrowing and its escape", Phys. Rev. Lett., vol. 65, pp. 1881-1884, 1990.
  55. C. M. Caves, "Quantum limits on noise in linear amplifiers", Phys. Rev. D, Part. Fields, vol. 26, no. 8, pp. 1817 -1839, Oct. 1982.
  56. G. Keiser, Optical Fiber Communications, 3rd ed. Boston, MA: McGraw-Hill, 2000.
  57. J. P. Gordon and H. A. Haus, "Random walk of coherently amplified solitons in optical fiber transmission", Opt. Lett., vol. 11, no. 10, pp. 665-667, 1986.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited