OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 24, Iss. 12 — Dec. 1, 2006
  • pp: 5044–5053

Efficient Time Domain Modeling of Rib Waveguide RF Modulators

Ana Vukovic, Ella V. Bekker, Phillip Sewell, and Trevor M. Benson

Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 5044-5053 (2006)

View Full Text Article

Acrobat PDF (607 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


This paper presents an efficient and physically consistent method for modeling lumped electroabsorption (EA) RF modulators. The method extends the original spectral index (SI) waveguide simulation method to the time domain in order to model the time-varying phenomena occurring in the multiple-quantum wells of these modulators. The accuracy of the methodology is first verified on the simpler cases of time-varying homogeneous media and time-varying slab waveguides. The time domain SI method is then used to model pulse generation and chirp phenomena in lumped EA modulators operating at both 10 and 40 GHz producing predictions in good agreement with previously published experimental values.

© 2006 IEEE

Ana Vukovic, Ella V. Bekker, Phillip Sewell, and Trevor M. Benson, "Efficient Time Domain Modeling of Rib Waveguide RF Modulators," J. Lightwave Technol. 24, 5044-5053 (2006)

Sort:  Journal  |  Reset


  1. D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. F. Ford, M. J. Robertson, "Discrete electroabsorption modulators with enhanced modulation depth," J. Lightw. Technol. 14, 1035-2043 (1996).
  2. P. Gerlach, M. Pesche, C. Hanke, B. K. Saravanan, R. Michalzik, "High-frequency analysis of laser-integrated lumped electroabsorption modulators," Proc. Inst. Electr. Eng.—Optoelectron. 152, 125-130 (2005).
  3. R. Krahenbuhl, W. K. Burns, "Modeling of broad-band traveling-wave optical-intensity modulators," IEEE Trans. Microw. Theory Technol. 48, 860-864 (2000).
  4. R. Chen, J. C. Cartledge, "Measurement-based model for the modulation properties of an integrated laser modulator and its applications to systems with tight optical filtering," J. Lightw. Technol. 23, 1683-1691 (2005).
  5. Y. Kim, H. Lee, J. Lee, J. Han, T. W. Oh, J. Jeong, "Chirp characteristics of 10 Gb/s electroabsorption modulator integrated DFB lasers," IEEE J. Quantum Electron. 36, 900-908 (2000).
  6. S. Nam, "Performance of travelling-wave electroabsorption modulators depending on microwave properties of waveguides calculated using the FDTD method," IEEE J. Sel. Topics Quantum Electron. 9, 763-769 (2003).
  7. R. M. Knox, P. P. Toulios, "Integrated circuits for the millimeter to optical frequency range," Proc. M. R. I. Symp., Submillimeter Waves (1970) pp. 497-516.
  8. F. R. Mongenthaler, "Velocity modulation of electromagnetic waves," Trans. IRE Microw. Theory Tech. MTT-6, 167-172 (1958).
  9. L. B. Felsen, G. M. Whitman, "Wave propagation in time-varying media," IEEE Trans. Antennas Propag. AP-18, 242-253 (1970).
  10. R. L. Fante, "Transmission of electromagnetic waves into time-varying media," IEEE Trans. Antennas Propag. AP-19, 417-424 (1971).
  11. S. I. Averkov, V. P. Boldin, "Waves in non-dispersive non-stationary inhomogeneous media," Radiophys. Quantum Electron. 23, 1060-1066 (1980).
  12. A. Nerukh, I. Scherbatko, D. Nerukh, "Using evolutionary recursion to solve an electromagnetic problem with time-varying parameters," Microw. Opt. Technol. Lett. 14, 31-36 (1997).
  13. F. Fedotov, A. Nerukh, T. M. Benson, P. Sewell, "Investigation of electromagnetic field in a layer with time-varying medium by volterra integral equation method," J. Lightw. Technol. 21, 305-314 (2003).
  14. A. Nerukh, F. Fedotov, T. M. Benson, P. Sewell, "Analytic-numerical approach to non-linear problems in dielectric waveguides," Opt. Quantum Electron. 36, 67-85 (2004).
  15. T. T. Hsu, L. Carin, "FDTD analysis of plane-wave diffraction from microwave devices on an infinite dielectric slab," IEEE Microw. Guided Wave Lett. 6, 16-18 (1996).
  16. P. S. Weitzman, U. Osterberg, "A modified beam propagation method to model second harmonic generation in optical fibres," IEEE J. Quantum Electron. 29, 1437-1443 (1993).
  17. R. W. Jackson, "Full wave, finite element analysis of irregular microstrip discontinuities," IEEE Trans. Microw. Theory Tech. 37, 81-89 (1989).
  18. P. E. Lewis, J. P. Ward, The Finite Element Method (Addison-Wesley, 1991).
  19. Rib Waveguide Theory by Spectral Index Method (Wiley, 1990).
  20. T. Tamir, Integrated Optics (Springer-Verlag, 1979).
  21. A. Vukovic, S. Greedy, P. Sewell, T. M. Benson, P. C. Kendall, "Advances in spectral methods for optoelectronic design," Facta Universitatis (Nis) 13, 73-82 (2000).
  22. D. K. Kalluri, Electromagnetics of Complex Media (CRC, 1999).
  23. L. M. Zhang, J. E. Caroll, "Semiconductor 1.55 $\mu\hbox{m}$ laser source with gigabit/second integrated electroabsorptive modulator," IEEE J. Quantum Electron. 30, 2573-2577 (1994).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited