Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 2,
  • pp. 846-
  • (2006)

Fiber Fuse Phenomenon in Triangular-Profile Single-Mode Optical Fibers

Not Accessible

Your library or personal account may give you access

Abstract

The unsteady-state thermal conduction processes in triangular-profile (TP) optical fibers, which exhibited zero chromatic dispersion near 1.55 µm, were studied theoretically with the explicit finite-difference method (FDM). It was estimated that these fibers would exhibit a high-temperature optical absorption on the basis of the high-temperature loss-increase mechanism proposed for step-index (SI) optical fibers. The core-center temperature of the TP fibers changed suddenly and reached over 7×10<sup>5</sup> K when a 1.064-µm laser power of 1 W was inputted into the core layer heated at 2608 K. This rapid heating of the core initiated the"fiber fuse"phenomenon. The propagation rates of the fiber fuse, estimated at 1.064 µm, were in fairly good agreement with the experimentally determined values. It was found that the threshold powers for initiating the fiber fuse are linearly proportional to the roots of the effective core areas of both the SI and the TP optical fibers. This coincides the experimental result reported by Seo et al.

© 2006 IEEE

PDF Article
More Like This
Triangular-profile single-mode fiber

M. A. Saifi, S. J. Jang, L. G. Cohen, and J. Stone
Opt. Lett. 7(1) 43-45 (1982)

Fluorescence profiling of single-mode optical fiber preforms

Herman M. Presby
Appl. Opt. 20(3) 446-450 (1981)

Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse

D. P. Hand and P. St. J. Russell
Opt. Lett. 13(9) 767-769 (1988)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved