OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 24, Iss. 3 — Mar. 1, 2006
  • pp: 1440–

Optical Amplification and Lasing by Stimulated Raman Scattering in Silicon Waveguides

Ansheng Liu, Haisheng Rong, Richard Jones, Oded Cohen, Dani Hak, and Mario Paniccia

Journal of Lightwave Technology, Vol. 24, Issue 3, pp. 1440- (2006)


View Full Text Article

Acrobat PDF (589 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Achieving light amplification and lasing in silicon is one of most challenging goals in silicon-based optoelectronics. As a nonlinear optical effect, stimulated Raman scattering (SRS) provides a means to generate optical gain in silicon. Recent results of a nonlinear optics approach to optical amplification and lasing in silicon at the Photonics Technology Laboratory of Intel Corporation are reviewed. This paper starts with the description of the underlying physics related to the Raman scattering in silicon and experimental results of SRS in silicon waveguides. Then, it is shown that nonlinear optical absorption associated with the two-photon absorption (TPA)-induced free carrier absorption (FCA) is a dominant loss mechanism limiting optical gain in a silicon waveguide in addition to the linear optical scattering loss due to the waveguide sidewall roughness. The design and fabrication of a low-loss silicon waveguide containing a p-i-n diode to reduce the nonlinear optical loss are described. It is demonstrated that the free carrier density inside the waveguide can be reduced significantly with a reverse bias of the p-i-n diode. As a result, net optical gain in a silicon waveguide is achieved. The design, fabrication, and characterization of a Raman silicon laser are also described. Both pulsed and continuous-wave (CW) lasing in silicon are achieved using SRS.

© 2006 IEEE

Citation
Ansheng Liu, Haisheng Rong, Richard Jones, Oded Cohen, Dani Hak, and Mario Paniccia, "Optical Amplification and Lasing by Stimulated Raman Scattering in Silicon Waveguides," J. Lightwave Technol. 24, 1440- (2006)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-24-3-1440


Sort:  Journal  |  Reset

References

  1. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, Chichester: U.K.: Wiley, 2004.
  2. L. Pavesi, and D. J. Lockwood, Eds. Silicon Photonics, Berlin: Germany: Springer-Verlag, 2004,vol. 94.
  3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature, vol. 427, no. 6975, pp. 615-618, Feb. 2004.
  4. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, "High-speed silicon Mach-Zehnder modulator," Opt. Express, vol. 13, no. 8, pp. 3129-3135, Apr. 2005.
  5. L. Naval, B. Jalali, L. Gomelsky and J. M. Liu, "Optimization of Si1-xGex/Si waveguide photodetectors operating at \lambda = 1.3 µm," J. Lightw. Technol., vol. 14, no. 5, pp. 787-797, May 1996.
  6. L. Colace, G. Masini and G. Assanto, "Ge-on-Si approach to the detection of near-infrared light," IEEE J. Quantum Electron., vol. 35, no. 12, pp. 1843-1852, Dec. 1999.
  7. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissipation of wafers," Appl. Phys. Lett., vol. 57, no. 10, pp. 1046-1048, Sep. 1990.
  8. V. Lehmann and U. Gösele, "Porous silicon formation: A quantum wire effect," Appl. Phys. Lett., vol. 58, no. 8, pp. 856-858, Feb. 1991.
  9. K. Chen, X. Huang, J. Xu and D. Feng, "Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum-well structures," Appl. Phys. Lett., vol. 61, no. 17, pp. 2069-2071, Oct. 1992.
  10. T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujia and N. Itoh, "Visible photoluminescence in Si+ -implanted silica glass," J. Appl. Phys., vol. 75, no. 12, pp. 7779-7783, Jun. 1994.
  11. G. G. Qin, A. P. Li, B. R. Zhang and B. C. Li, "Visible electroluminescence from semitransparent Au film/extra thin Si-rich silicon oxide film/p-Si structure," J. Appl. Phys., vol. 78, no. 3, pp. 2006-2009, Aug. 1995.
  12. M. Wang, X. Huang, J. Xu, W. Li, Z. Liu and K. Chen, "Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices," Appl. Phys. Lett., vol. 72, no. 6, pp. 722-724, Feb. 1998.
  13. M. L. Brongersma, A. Polman, K. S. Min, T. Tambo and H. A. Atwater, "Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation," Appl. Phys. Lett., vol. 72, no. 20, pp. 2577-2579, May 1998.
  14. F. Iacona, G. Franzo and C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys., vol. 87, no. 3, pp. 1295-1303, Feb. 2000.
  15. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White Jr., J. Diener, D. Kovalev, F. Koch and L. Tsybeskov, "Ordering and self-organization in nanocrystalline silicon," Nature, vol. 407, no. 6802, pp. 358-361, Sep. 2000.
  16. L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo and F. Priolo, "Optical gain in silicon nanocrystals," Nature, vol. 408, no. 6811, pp. 440-444, Nov. 2000.
  17. L. Khriachtchev, M. Rasanen, S. Novikov and J. Sinkkonen, "Optical gain in Si/SiO2 lattice: Experimental evidence with nanosecond pulses," Appl. Phys. Lett., vol. 79, no. 9, pp. 1249-1251, Aug. 2001.
  18. L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo and F. Iacona, "Dynamics of stimulated emission in silicon nanocrystals," Appl. Phys. Lett., vol. 82, no. 26, pp. 4636-4638, Jun. 2003.
  19. J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli and L. Pavesi, "Stimulated emission in nanocrystalline silicon superlattices," Appl. Phys. Lett., vol. 83, no. 26, pp. 5479-5481, Dec. 2003.
  20. L. Dal Negro, M. Cazzanelli, B. Danese, L. Pavesi, F. Iacona, G. Franzo and F. Priolo, "Light amplification in silicon nanocrystals by pump and probe transmission measurements," J. Appl. Phys., vol. 96, no. 10, pp. 5747-5755, Nov. 2004.
  21. S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato and A. Polman, "Room-temperature luminescence from Er3+ -implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett., vol. 63, no. 14, pp. 1942-1944, Aug. 1993.
  22. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi and K. Yamamoto, "1.54 µm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrytals: Evidence for energy transfer from Si nanocrystals to Er3+," Appl. Phys. Lett., vol. 71, no. 9, pp. 1198-1200, Sep. 1997.
  23. G. Franzo, S. Coffa, F. Priolo and C. Spinella, "Mechanism and performance of forward and reverse bias electroluminescence at 1.54 µm from Er-doped Si diodes," J. Appl. Phys., vol. 81, no. 6, pp. 2784-2793, Mar. 1997.
  24. F. Priolo, G. Franzo, S. Coffa and A. Carnera, "Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si," Phys. Rev. B, Condens. Matter, vol. 57, no. 8, pp. 4443-4455, Feb. 1998.
  25. P. G. Kik, M. L. Brongersma and A. Polman, "Strong exciton-erbium coupling in Si nanocrystal-doped SiO2," Appl. Phys. Lett., vol. 76, no. 17, pp. 2325-2327, Apr. 2000.
  26. H. S. Han, S. Y. Seo and J. H. Shin, "Optical gain at 1.54 µm in erbium-doped nanocluster sensitized waveguide," Appl. Phys. Lett., vol. 79, no. 27, pp. 4568-4570, Oct. 2001.
  27. F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzo, F. Priolo, D. Sanfilippo, G. Di Stefano and P. G. Fallica, "Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices," Appl. Phys. Lett., vol. 81, no. 17, pp. 3242-3244, Oct. 2002.
  28. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood, "An efficient room-temperature silicon-based light-emitting diode," Nature, vol. 410, no. 6825, pp. 192-194, Mar. 2001.
  29. T. Trupke, J. Zhao, A. Wang, R. Corkish and M. Green, "Very efficient light emission from bulk crystalline silicon," Appl. Phys. Lett., vol. 82, no. 18, pp. 2996-2998, May 2003.
  30. K. P. Homewood and M. A. Lourenco, "Light from Si via dislocation loops," Mater. Today, vol. 8, no. 1, pp. 34-39, Jan. 2005.
  31. G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin and D. Grutzmacher, "Intersubband electroluminescence from silicon-based quantum cascade structures," Science, vol. 290, no. 5500, pp. 2277-2280, Dec. 2000.
  32. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. New York: Academic, 1995.
  33. J. P. Russell, "Raman scattering in silicon," Appl. Phys. Lett., vol. 6, no. 11, pp. 223-224, Jun. 1965.
  34. J. M. Ralston and R. K. Chang, "Spontaneous-Raman-scattering efficiency and stimulated scattering in silicon," Phys. Rev. B, Condens. Matter, vol. 2, no. 6, pp. 1858-1862, Sep. 1970.
  35. T. R. Hart, R. L. Aggarwal and B. Lax, "Temperature dependence of Raman scattering in silicon," Phys. Rev. B, Condens. Matter, vol. 1, no. 2, pp. 638-642, Jan. 1970.
  36. P. A. Temple and C. E. Hathaway, "Multiphonon Raman spectrum of silicon," Phys. Rev. B, Condens. Matter, vol. 7, no. 8, pp. 3685-3697, Apr. 1973.
  37. R. Claps, D. Dimitropoulos, Y. Han and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 µm," Opt. Express, vol. 10, no. 22, pp. 1305-1313, Nov. 2002.
  38. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express, vol. 11, no. 15, pp. 1731-1739, Jul. 2003.
  39. T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett., vol. 84, no. 15, pp. 2745-2747, Apr. 2004.
  40. R. L. Espinola, J. I. Dadap, R. M. Osgood Jr., S. J. McNab and Y. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express, vol. 12, no. 16, pp. 3713-3718, Aug. 2004.
  41. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen and D. Hak, "Raman gain and nonlinear optical absorption measurement in a low loss silicon waveguide," Appl. Phys. Lett., vol. 85, no. 12, pp. 2196-2198, Sep. 2004.
  42. A. Liu, H. Rong, M. Paniccia, O. Cohen and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express, vol. 12, no. 18, pp. 4261-4267, Sep. 2004.
  43. Q. Xu, V. Almeida and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express, vol. 12, no. 19, pp. 4437-4442, Sep. 2004.
  44. T. K. Liang and H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett., vol. 85, no. 16, pp. 3343-3356, Nov. 2004.
  45. B. Jalali, V. Raghunathan, O. Boyraz, R. Claps and D. Dimitropoulos, "Wavelength conversion and light amplification in silicon waveguides," in Proc. Group IV Photonics Conf., Hong Kong, Sep. 29-Oct. 1 2004, pp. 10-12.
  46. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express, vol. 12, no. 21, pp. 5269-5273, Oct. 2004.
  47. R. Jones, H. Rong, A. Liu, A. W. Fang, M. Paniccia, D. Hak and O. Cohen, "Net continuous-wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express, vol. 13, no. 2, pp. 519-525, Jan. 2005.
  48. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-silicon Raman laser," Nature, vol. 433, no. 7023, pp. 292-294, Jan. 2005.
  49. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang and M. Paniccia, "A continuous-wave Raman silicon laser," Nature, vol. 433, no. 7027, pp. 725-728, Feb. 2005.
  50. K. Mizoguchi and S. Nakashima, "Determination of crystallographic orientations in silicon films by Raman-microprobe polarization measurements," J. Appl. Phys., vol. 65, no. 7, pp. 2583-2590, Apr. 1989.
  51. R. A. Soref, J. Schmidtchen and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron., vol. 27, no. 8, pp. 1971-1974, Aug. 1991.
  52. S. Pogossian, L. Vescan and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross-section," J. Lightw. Technol., vol. 16, no. 10, pp. 1851-1853, Oct. 1998.
  53. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. Boston, MA: Artech House, 2000.
  54. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake and M. Asghari, "Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength," Appl. Phys. Lett., vol. 80, no. 3, pp. 416-418, Jan. 2002.
  55. M. Dinu, F. Quochi and H. Garcia, "Third-order nonlinearities in silicon telecom wavelengths," Appl. Phys. Lett., vol. 82, no. 18, pp. 2954-2956, May 2003.
  56. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi and R. M. Osgood, "Nonlinear absorption in a GaAs waveguide just above half the band gap," IEEE J. Quantum Electron., vol. 30, no. 5, pp. 1172-1174, May 1994.
  57. D. V. Thourhout, C. R. Doerr, C. H. Joyner and J. L. Pleumeekers, "Observation of WDM crosstalk in passive semiconductor waveguides," IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 457-459, May 2001.
  58. R. A. Soref and P. J. Lorenzo, "All-silicon active and passive guided-wave components for \lambda = 1.3 and 1.6 µm," IEEE J. Quantum Electron., vol. QE-22, no. 6, pp. 873-879, Jun. 1986.
  59. J. Auyeung and A. Yariv, "Theory of CW Raman oscillation in optical fibers," J. Opt. Soc. Amer., vol. 69, no. 6, pp. 803-807, Jun. 1979.
  60. G. Vareille, O. Audouin and E. Desurive, "Numerical optimization of power conversion efficiency in 1480 nm multi-Stokes Raman fiber lasers," Electron. Lett., vol. 34, no. 7, pp. 675-676, Apr. 1998.
  61. M. Rini, I. Cristiani and V. Degiorgio, "Numerical modeling and optimization of cascaded CW Raman fiber lasers," IEEE J. Quantum Electron., vol. 36, no. 10, pp. 1117-1122, Oct. 2000.
  62. A. Liu, L. Liao, H. Rong, R. Jones, D. Samara-Rubio, D. Rubin, R. Cohen, O. Cohen, D. Hak, T. Franck, U. D. Keil and M. Paniccia, "Recent development in silicon photonics: 2.5 Gb/s silicon optical modulator and silicon Raman laser," in Proc. SPIE, vol. 5730, Mar. 2005, pp. 80-93.
  63. M. Krause, H. Renner and E. Brinkmeyer, "Analysis of Raman lasing characteristics in silicon-on-insulator waveguides," Opt. Express, vol. 12, no. 23, pp. 5703-5710, Nov. 2004.
  64. E. Garmire, "Criteria for optical bistability in a lossy saturating Fabry-Pérot," IEEE J. Quantum Electron., vol. 25, no. 3, pp. 289-295, Mar. 1989.
  65. R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express, vol. 13, no. 5, pp. 1716-1723, Mar. 2005.
  66. V. Raghunathan, R. Claps, D. Dimitropoulos and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave-mixing," Appl. Phys. Lett., vol. 85, no. 1, pp. 34-36, Jul. 2004.
  67. R. K. Jain, C. Lin, R. H. Stolen and A. Ashkin, "A tunable multiple Stokes CW fiber Raman oscillator," Appl. Phys. Lett., vol. 31, no. 2, pp. 89-90, Jul. 1977.
  68. D. I. Chang, H. K. Lee and K. H. Kim, "Cascaded Raman fibre laser operating at 1.48 µm," Electron. Lett., vol. 35, no. 22, pp. 1951-1952, Oct. 1999.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited