Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 9,
  • pp. 3353-
  • (2006)

Two-Photon Absorption for Optical Clock Recovery in OTDM Networks

Not Accessible

Your library or personal account may give you access

Abstract

The authors describe the design and performance of an ultrafast optical clock recovery system that is based on two-photon absorption (TPA) in a silicon avalanche photodiode. Unlike many other optical clock recovery techniques, the system is shown to be polarization insensitive, broadband, low jitter, and scalable to high data rates. Moreover, the system is simple, economical, and suitable for integration with silicon electronics. Successful operation of the system is reported for speeds up to 80 Gb/s and transmission distances up to 840 km using a recirculating loop. The authors introduce a new dithering detection scheme that dramatically improves the dynamic range and decreases polarization and wavelength dependence, without introducing an additional timing jitter. The system achieves a dynamic range of 10 dB and optical bandwidth exceeding 35 nm.

© 2006 IEEE

PDF Article
More Like This
Clock recovery using cascaded LiNbO3 modulator

Hao Dong, Hongzhi Sun, Guanghao Zhu, Qiang Wang, and Niloy K. Dutta
Opt. Express 12(20) 4751-4757 (2004)

Baud-rate flexible clock recovery and channel identification in OTDM realized by pulse position modulation

Takayuki Kurosu, Ken Tanizawa, Dexiang Wang, Sze Yun Set, and Shu Namiki
Opt. Express 21(4) 4447-4455 (2013)

Effective optical clock recovery and simultaneous fourfold demultiplexing of OTDM signal using an optoelectonic oscillator

Qiang Wang, Li Huo, Yanfei Xing, Caiyun Lou, and Bingkun Zhou
Opt. Express 21(24) 30000-30006 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved