OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 25, Iss. 1 — Jan. 1, 2007
  • pp: 440–447

Improved Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain Method for Photonic-Bandgap Cavities

Domenico Pinto and S. S. A. Obayya

Journal of Lightwave Technology, Vol. 25, Issue 1, pp. 440-447 (2007)


View Full Text Article

Acrobat PDF (369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, an improved complex-envelope alternating-direction-implicit finite-difference time-domain (CE-ADI-FDTD) method has been presented for the analysis of photonic-bandgap cavities. The improvement relies on a different approach of the perfectly matched-layer absorbing-boundary condition in order to avoid the formation of instability, as reported in the literature. The high numerical precision and efficiency obtained are clearly demonstrated through the agreement of the results obtained using CE-ADI-FDTD and their counterparts obtained using other rigorous approaches reported in the literature.

© 2007 IEEE

Citation
Domenico Pinto and S. S. A. Obayya, "Improved Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain Method for Photonic-Bandgap Cavities," J. Lightwave Technol. 25, 440-447 (2007)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-25-1-440


Sort:  Year  |  Journal  |  Reset

References

  1. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
  2. P. I. Borel, L. H. Frandsen, A. Harpøth, J. B. Leon, H. Liu, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, S. Beckx, "Bandwidth engineering of photonic crystal waveguide bends," Electron. Lett. 40, 1263-1264 (2004).
  3. R. Costa, A. Melloni, M. Martinelli, "Bandpass resonant filters in photonic-crystal waveguides," IEEE Photon. Technol. Lett. 15, 401-403 (2003).
  4. E. Pistono, P. Ferrari, L. Duvillaret, J. L. Coutaz, A. Jrad, "Tunable bandpass microwave filters based on defect commandable photonic bandgap waveguides ," Electron. Lett. 39, 1131-1133 (2003).
  5. P. R. Villeneuve, S. Fan, J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency ," Phys. Rev. B, Condens. Matter 54, 7837-7842 (1996).
  6. H. M. H. Chong, R. M. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
  7. A. Mekis, M. Meier, A. DodaBalapur, R. E. Slusher, J. D. Joannopulos, "Lasing mechanism in two dimensional photonic crystal lasers," Appl. Phys., A Mater. Sci. Process. 69, 111-114 (1999).
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
  9. B. M. Nyman, P. R. Prucnal, "The modified beam propagation method," J. Lightw. Technol. 7, 931-936 (1989).
  10. W. Huang, C. Xu, S. T. Chu, S. K. Chaudhuri, "The finite-difference vector beam propagation method: Analysis and assessment," J. Lightw. Technol. 10, 295-305 (1992).
  11. S. S. A. Obayya, B. M. A. Rahman, H. A. El-Mikati, "New full-vectorial numerically efficient propagation algorithm based on the finite element method ," J. Lightw. Technol. 18, 409-415 (2000).
  12. W. P. Huang, S. T. Chu, S. K. Chaudhuri, "A semivectorial finite-difference time-domain method," IEEE Photon. Technol. Lett. 3, 803-806 (1991).
  13. W. Xue, G. Zhou, Y. Xiao, R. Yang, "Analysis of dispersion properties in hexagonal hollow fiber," J. Lightw. Technol. 22, 1909-1914 (2004).
  14. S. S. A. Obayya, "Efficient finite-element-based time-domain beam propagation analysis of optical integrated circuits," IEEE J. Quantum Electron. 40, 591-595 (2004).
  15. H. Rao, R. Scarmozzino, R. M. Osgood, "An improved ADI-FDTD method and its application to photonic simulations," IEEE Photon. Technol. Lett. 14, 477-479 (2002).
  16. S. Wang, F. L. Teixeira, "An efficient PML implementation for the ADI-FDTD method," IEEE Microw. Wireless Compon. Lett. 13, 72-74 (2003).
  17. V. F. Rodriguez-Esquerre, M. Koshiba, H. Figueroa, "Finite-element analysis of photonic crystal cavities: Time and frequency domain," J. Lightw. Technol. 23, 1514-1521 (2005).
  18. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  19. V. F. Rodriguez-Esquerre, M. Koshiba, H. Figueroa, "Finite-element time-domain analysis of 2-D photonic crystal resonant cavities," IEEE Photon. Technol. Lett. 16, 816-818 (2004).
  20. S. S. A. Obayya, "Finite element time domain solution of resonant modes in photonic bandgap cavities," J. Opt. Quantum Electron. 37, 865-873 (2005).
  21. M. R. Watts, S. G. Johnson, H. A. Haus, J. D. Joannopoulos, "Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap," Opt. Lett. 27, 1785-1787 (2002).
  22. J. K. Hwang, S. B. Hyun, H. Y. Ryu, Y. H. Lee, "Resonant modes of two-dimensional photonic bandgap cavities determined by the finite-element method and by use of the anisotropic perfectly matched layer boundary condition," J. Opt. Soc. Amer. B, Opt. Phys. 15, 2316-2324 (1998).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited