OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 26, Iss. 11 — Jun. 1, 2008
  • pp: 1519–1523

Enhanced Terahertz Emission From ZnSe Nano-Grain Surface

Shan He, Xiaoshu Chen, Xiaojun Wu, Gang Wang, and Fuli Zhao

Journal of Lightwave Technology, Vol. 26, Issue 11, pp. 1519-1523 (2008)

View Full Text Article

Acrobat PDF (592 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


ZnSe(111) nano-grain surface is fabricated by the femtosecond laser ablation technology and is applied for terahertz (THz) generation. Compared with bare ZnSe surface, this nano-grain surface can improve THz emission properties. The power of THz radiation from ZnSe nano-grain surface is about twice as large as that from bare surface at optical rectification range. This enhancement can be attributed to the local field enhancement of the ZnSe nano-grain surface. The primary field enhancement mechanism is the macroscopic local-field enhancement which includes both of the lightning-rod effect and the local-plasmon effect.

© 2008 IEEE

Shan He, Xiaoshu Chen, Xiaojun Wu, Gang Wang, and Fuli Zhao, "Enhanced Terahertz Emission From ZnSe Nano-Grain Surface," J. Lightwave Technol. 26, 1519-1523 (2008)

Sort:  Year  |  Journal  |  Reset


  1. Q. Wu, T. D. Hewitt, X.-C. Zhang, "Two-dimensional electro-optic imaging of THz beams," Appl. Phys. Lett. 69, 1026-1028 (1996).
  2. D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, "T-ray imaging," IEEE J. Sel. Top. Quantum Electron. 2, 679-692 (1996).
  3. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, X.-C. Zhang, "A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy," J. Appl. Phys. 89, 2357-2359 (2001).
  4. J. L. Hughes, E. C. Camus, M. D. Fraser, C. Jagadish, M. B. Johnston, "Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission," Phys. Rev. B 70, 235330.1-6 (2004).
  5. J. B. Khurgin, "Optical rectification and terahertz emission in semiconductors excited above the band gap," J. Opt. Soc. Amer. B 11, 2492-2501 (1994).
  6. P. N. Saeta, B. I. Greene, S. L. Chuang, "Short terahertz pulses from semiconductor surfaces: The importance of bulk difference-frequency mixing," Appl. Phys. Lett. 63, 3482-3484 (1993).
  7. M. Reid, I. Cravetchi, R. Fedosejevs, "Enhanced nonlinear optical response of InP (100) membranes," Phys. Rev. B 71, 81306-81309 (2005).
  8. M. Reid, I. V. Cravetchi, R. Fedosejevs, "Enhanced terahertz emission from porous InP (111) membranes," Appl. Phys. Lett. 86, 21904-21906 (2005).
  9. G. H. Welsh, N. T. Hunt, K. Wynne, "Terhertz-pulse emission through laser excitation of surface plasmons in a mental grating," Phys. Rev. Lett. 98, 26803-26806 (2007).
  10. F. Kadlec, P. Kuzel, J.-L. Coutaz, "Study of terahertz radiation generated by optical rectification on thin gold films," Opt. Lett. 30, 1402-1404 (2005).
  11. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, H. Kuroda, "Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses," Phys. Rev. B 72, 125429-125432 (2005).
  12. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, H. Kuroda, "Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF${\rm }_{2}$ crystals," Phys. Rev. B 73, 54105-54113 (2006).
  13. X. J. Wu, X. S. Chen, F. L. Zhao, T. Q. Jia, G. Wang, "Terahertz radiation mechanisms in ZnSe at Femtosecond Laser Pulse Excitation," Jpn. J. Appl. Phys. 46, 1497-1500 (2007).
  14. X.-C. Zhang, D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
  15. T. Dekorsy, H. Auer, H. J. Baker, H. G. Roskos, H. Hurz, "THz electromagnetic emission by coherent infrared-active phonons," Phys. Rev. B 53, 4005-4014 (1996).
  16. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, E. W. Van Stryland, "Determination of bound- electronic and free-carriernonlinearities in ZnSe, GaAs, CdTe and ZnTe," J. Opt. Soc. Amer. B 9, 405-414 (1992).
  17. S. L. Chuang, S. S. Rink, B. I. Greene, P. N. Saeta, A. F. J. Levi, "Optical rectification at semiconductor surfaces," Phys. Rev. Lett. 68, 102-105 (1992).
  18. P. F. Liao, A. Wokaun, "Lightning rod effect in surface enhanced Raman scattering," J. Chem. Phys. 76, 751-752 (1982).
  19. J. Gersten, A. Nitzan, "Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces," J. Chem. Phys. 73, 3023-3037 (1980).
  20. R. G. Olsen, "Integral equations for electrostatics problems with thin dielectric or conducting layers," IEEE Trans. Elec. Ins. EI-21, 565-573 (1986).
  21. J. Daffe, R. G. Olsen, "An integral equation technique for solving rotationally symmetric electrostatic problems in conducting and dielectric material," IEEE Trans. Power Appl. Syst. PAS-98, 1609-1616 (1979).
  22. A. Wokaun, J. P. Gordan, P. F. Liao, "Radiation damping in surface-enhanced Raman scattering," Phys. Rev. Lett. 48, 957-960 (1982).
  23. H. Shima, S. Funakawa, C. Kimura, T. Sugino, "Electron emission from boron nitride films deposited on patterned GaAs substrates," J. Vac. Sci. Technol. B 23, 1084-1087 (2005).
  24. K. Arya, "Electric field enhancement near a randomly rough metal surface: The effect of a dielectric overlayer," Phys. Rev. B 30, 7242-7249 (1984).
  25. M. Nakajima, M. Hangyo, M. Ohta, H. Miyazaki, "Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature," Phys. Rev. B 67, 195308-195314 (2003).
  26. M. Nakajima, Y. Oda, T. Suemoto, "Competing terahertz radiation mechanisms in semi-insulating InP at high-density excitation," Appl. Phys. Lett. 85, 2694-2696 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited