OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 26, Iss. 7 — Apr. 1, 2008
  • pp: 799–806

Mode-Locking in a Semiconductor Fiber Laser Using Cross-Absorption Modulation in an Electroabsorption Modulator and Application to All-Optical Clock Recovery

Lawrence R. Chen and John C. Cartledge

Journal of Lightwave Technology, Vol. 26, Issue 7, pp. 799-806 (2008)

View Full Text Article

Acrobat PDF (477 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We demonstrate the use of cross-absorption modulation in an electroabsorption modulator to actively mode-lock a semiconductor fiber laser at 10 GHz. The laser cavity also comprises a linearly chirped fiber Bragg grating to obtain wavelength tunable operation based on the dispersion tuning approach. The laser exhibits uniform output pulse characteristics throughout the tuning range. We also investigate the impact of using different types of optical pump signals on the output pulses. Finally, we demonstrate the application of the mode-locked laser for all-optical clock recovery.

© 2008 IEEE

Lawrence R. Chen and John C. Cartledge, "Mode-Locking in a Semiconductor Fiber Laser Using Cross-Absorption Modulation in an Electroabsorption Modulator and Application to All-Optical Clock Recovery," J. Lightwave Technol. 26, 799-806 (2008)

Sort:  Year  |  Journal  |  Reset


  1. I. N. Duling, IIICompact Sources of Ultrashort Pulses (Cambridge Univ. Press, 1995).
  2. L. Xu, L. F. K. Lui, P. K. A. Wai, H. Y. Tam, M. S. Demokan, "10 GHz actively mode-locked erbium-doped fiber ring laser using an electro-absorption modulator and a linear optical amplifier," Proc. OFC (2006) paper OW127.
  3. M. J. Guy, J. R. Taylor, D. G. Moodie, A. E. Kelly, "10 GHz 3 ps actively mode-locked ring laser incorporating a semiconductor laser amplifier and an electroabsorption modulator," Electron. Lett. 32, 2240-2241 (1996).
  4. J. Zhang, M. Yao, H. Zhang, Q. Xu, Y. Gao, "10-GHz actively mode-locked pulse generation employing a semiconductor optical amplifier and an electroabsorption modulator in a fiber ring," Opt. Commun. 197, 385-391 (2001).
  5. J. M. Roth, K. Dreyer, B. C. Collings, W. H. Knox, K. Bergman, "Actively mode-locked 1.5-μm 10-GHz picosecond fiber laser using a monolithic semiconductor optical amplifier/electroabsorption modulator," IEEE Photon. Technol. Lett. 14, 917-919 (2002).
  6. K. Vlachos, C. Bintjas, N. Pleros, H. Avramopoulos, "Ultrafast semiconductor-based fiber laser source," IEEE J. Sel. Topics Quant. Electron. 10, 147-154 (2004).
  7. J. He, K. T. Chan, "All-optical actively modelocked fiber ring laser based on cross-gain modulation in SOA," Electron. Lett. 38, 1504-1505 (2002).
  8. N. Edagawa, M. Suzuki, S. Yamamoto, "Novel wavelength converter using electroabsorption modulator," IEICE Trans. Electron. E81-C, 1251-1257 (1998).
  9. S. Højfeldt, S. Bischoff, J. Mørk, "All-optical wavelength conversion and signal regeneration using an electroabsorption modulator," J. Lightw. Technol. 18, 1121-1127 (2000).
  10. K. K. Chow, C. Shu, "All-optical wavelength conversion with multicasting at 6 x 10 Gbit/s using electroabsorption modulator," Electron. Lett. 39, 1395-1397 (2003).
  11. L. Xu, N. Chi, K. Yvind, L. J. Christiansen, L. K. Oxenløwe, J. Mørk, P. Jeppesen, J. Hanberg, "7 x 40 Gb/s base-rate RZ all-optical broadcasting utilizing an electroabsorption modulator," Opt. Expr. 12, 416-420 (2004).
  12. H. Murai, M. Kagawa, H. Tsuji, K. Fujii, "80-Gb/s error-free transmission over 5600 km using a cross absorption modulation based optical 3R regenerator," IEEE Photon. Technol. Lett. 17, 1965-1967 (2005).
  13. C. Wu, N. K. Dutta, "High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser," IEEE J. Quant. Electron. 36, 145-150 (2000).
  14. L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, J. Goldhar, "A stable smoothly wavelength-tunable picosecond pulse generator," IEEE Photon. Technol. Lett. 14, 840-842 (2002).
  15. K. Tamura, N. Nakazawa, "Dispersion-tuned harmonically mode-locked fiber ring laser for self-stabilization to an external clock," Opt. Lett. 21, 1984-1986 (1996).
  16. J. He, K. T. Chan, "Generation and wavelength switching of picosecond pulses by optically modulating a semiconductor optical amplifier in a fiber laser with optical delay line," IEEE Photon. Technol. Lett. 15, 798-800 (2003).
  17. M. Jinno, T. Matsumoto, M. Koga, "All-optical timing extraction using an optical tank circuit," IEEE Photon. Technol. Lett. 2, 203-204 (1990).
  18. B. Sartorius, C. Bornholdt, O. Brox, H. J. Ehrke, D. Hiffmann, R. Ludwig, M. Möhrle, "All-optical clock recovery module based on self-pulsating DFB laser," Electron. Lett. 34, 1664-1665 (1998).
  19. D. M. Patrick, R. J. Manning, "20 Gbit/s all-optical clock recovery using semiconductor nonlinearity," Electron. Lett. 30, 151-152 (1994).
  20. K. G. Vlachos, "Optical clock recovery and clock division at 20 Gb/s using a tunable semiconductor fiber ring laser," Opt. Commun. 222, 249-255 (2003).
  21. J. He, K. T. Chan, "Wavelength-switchable all optical clock recovery at 10 Gbit/s based on semiconductor fiber ring laser," Opt. Expr. 13, 327-335 (2005).
  22. L. Wang, Y. Su, A. Agarwal, P. Kumar, "Polarization insensitive widely tunable all-optical clock recovery based on am mode-locking of a fiber ring laser," IEEE Photon. Technol. Lett. 12, 211-213 (2000).
  23. L. F. K. Liu, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, C. Lu, "All-optical clock recovery using erbium-doped fiber ring laser incorporating an electro-absorption modulator and a linear optical amplifier," IEEE Photon. Technol. Lett. 19, 710-712 (2007).
  24. K. Vlachos, G. Theophilopoulos, A. Hatziefremisdis, H. Avramopoulos, "30 Gb/s all-optical clock recovery circuit," IEEE Photon. Technol. Lett. 12, 705-705 (2000).
  25. F. Parmigiani, L. K. Oxenløwe, M. Galili, M. Ibsen, D. Zibar, P. Petropoulos, D. J. Richardson, A. T. Clausen, P. Jeppesen, "All-optical 160 Gbit/s RZ data retiming system incorporating a pulse shaping fiber Bragg grating," Eur. Conf. Opt. Commun. (2007) paper 5.3.1.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited