OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 11 — Jun. 1, 2009
  • pp: 1565–1570

Extending Effective Area of Fundamental Mode in Optical Fibers

Liang Dong, Hugh A. Mckay, Andrius Marcinkevicius, Libin Fu, Jun Li, Brian K. Thomas, and Martin E. Fermann

Journal of Lightwave Technology, Vol. 27, Issue 11, pp. 1565-1570 (2009)

View Full Text Article

Acrobat PDF (838 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


High power fiber lasers have become well established in many commercial realms. However, the amplification of ultrafast pulses to higher pulse energies in ytterbium-doped fibers remains very challenging due to nonlinear effects. We have demonstrated a new class of optical fibers based on resonantly enhanced leakage channels to extend the effective mode area of conventional single mode fibers by over two orders of magnitudes. This new class of fibers paves the way for a new breed of diffraction-limited kW-level ultrafast lasers, which can usher in a new age of high peak and average power ultrafast laser science as well as many new industrial applications in material processing.

© 2009 IEEE

Liang Dong, Hugh A. Mckay, Andrius Marcinkevicius, Libin Fu, Jun Li, Brian K. Thomas, and Martin E. Fermann, "Extending Effective Area of Fundamental Mode in Optical Fibers," J. Lightwave Technol. 27, 1565-1570 (2009)

Sort:  Year  |  Journal  |  Reset


  1. M. E. Fermann, "Single-mode excitation of multimode fibers with ultra short pulses," Opt. Lett. 23, 52-54 (1998).
  2. L. Dong, X. Peng, J. Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. Amer. B 24, 1689-1697 (2007).
  3. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Exp. 13, 1055-1058 (2005).
  4. I. Hartl, A. Marcinkevicius, M. E. Fermann, T. R. Schibli, D. C. Yost, D. D. Hudson, J. Ye, "'Cavity enhanced Yb-similariton fiber laser frequency comb: 3$\,\ast{10}^{14}~{\rm W/cm}^{2}$ peak intensity at 136 MHz'," Opt. Lett. 32, 2870-2870 (2007).
  5. D. Yost, T. R. Schibli, J. Ye, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett 25, 442-444 (2000).
  6. J. P. Koplow, D. A. V. Kliner, L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett 25, 442-444 (2000).
  7. C. D. Brooks, F. D. Teodoro, "Multi-megawatt peak-power, single-transverse-mode operation of a 100 $\mu{\hbox {m}}$ core diameter, Yb-doped rod-like photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111119-111121 (2006).
  8. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, F. V. Dimarcello, "Light propagation with ultra large modal areas in optical fibers," Opt. Lett.s 31, 1797-1799 (2006).
  9. C. -. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, K. Tankala, Advanced Solid-State Photonics (Optical Society of America, 2007).
  10. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, A. Tünermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007).
  11. L. Dong, "Approximate treatment of nonlinear waveguide equation in the regime of nonlinear self-focus," J. Lightw. Technol. .
  12. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, A. V. Smith, "Peak-power limits on fiber amplifiers imposed by self-focusing," Opt. Lett. 31, 3423-3425 (2006).
  13. G. Fibich, A. L. Gaeta, "Critical power for self-focusing in bulk media and in hollow waveguides," Opt. Lett 25, 335-337 (2000).
  14. G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, D. Weybourne, "High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser," Opt. Exp. 14, 4439-4439 (2006).
  15. P. S. J. Russell, "Photonic crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).
  16. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. d. Sterke, L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Amer. B 19, 2322-2330 (2002).
  17. A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ. Press, 1998).
  18. J. M. Fini, "Design of solid and microstructure fibers for suppression of higher order modes," Opt. Exp. 13, 3477-3490 (2005).
  19. Y. Tsuchida, K. Saitoh, M. Koshiba, "Design of single-mode holey fibers with large-mode-area and low bending losses: The significance of the ring-core region," Opt. Exp. 15, 1794-1803 (2007).
  20. L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, H. Winful, "All glass large core leakage channel fibers," IEEE J. Sel. Topics Quantum Electron. .

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited